Genetic loci and metabolic states associated with murine epigenetic aging

  1. Khyobeni Mozhui  Is a corresponding author
  2. Ake T Lu
  3. Caesar Z Li
  4. Amin Haghani
  5. Jose Vladimir Sandoval-Sierra
  6. Yibo Wu
  7. Robert W Williams
  8. Steve Horvath
  1. University of Tennessee Health Science Center, United States
  2. University of California, Los Angeles, United States
  3. University of California Los Angeles David Geffen School of Medicine, United States
  4. University of Geneva, Switzerland

Abstract

Changes in DNA methylation (DNAm) are linked to aging. Here, we profile highly conserved CpGs in 339 predominantly female mice belonging to the BXD family for which we have deep longevity and genomic data. We use a 'pan-mammalian' microarray that provides a common platform for assaying the methylome across mammalian clades. We computed epigenetic clocks and tested associations with DNAm entropy, diet, weight, metabolic traits, and genetic variation. We describe the multifactorial variance of methylation at these CpGs, and show that high fat diet augments the age-associated changes. Entropy increases with age. The progression to disorder, particularly at CpGs that gain methylation over time, was predictive of genotype-dependent life expectancy. The longer-lived BXD strains had comparatively lower entropy at a given age. We identified two genetic loci that modulate rates of epigenetic age acceleration (EAA): one on chromosome (Chr) 11 that encompasses the Erbb2/Her2 oncogenic region, and a second on Chr19 that contains a cytochrome P450 cluster. Both loci harbor genes associated with EAA in humans including STXBP4, NKX2-3, and CUTC. Transcriptome and proteome analyses revealed associations with oxidation-reduction, metabolic, and immune response pathways. Our results highlight concordant loci for EAA in humans and mice, and demonstrate a tight coupling between the metabolic state and epigenetic aging.

Data availability

The normalized microarray data and raw files are available from the NCBI Gene Expression Omnibus (accession ID GSE199979). The HorvathMammalMethylChip40 array manifest files and genome annotations of CpGs can be found on Github at https://github.com/shorvath/MammalianMethylationConsortium.79 Individual level BXD data, including the processed microarray data are available on www.genenetwork.org on FAIR+ compliant format; data identifiers, and way to retrieve data are described in Supplementary file 13.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Khyobeni Mozhui

    Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, United States
    For correspondence
    kmozhui@uthsc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6623-4112
  2. Ake T Lu

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Caesar Z Li

    Department of Human Genetics, University of California Los Angeles David Geffen School of Medicine, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Amin Haghani

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6052-8793
  5. Jose Vladimir Sandoval-Sierra

    Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2007-6582
  6. Yibo Wu

    University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  7. Robert W Williams

    Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    No competing interests declared.
  8. Steve Horvath

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    Steve Horvath, is a founder of the non-profit Epigenetic Clock Development Foundation, which plans to license several of his patents from his employer, University of California Regents. The Regents of the University of California filed a patent application (publication number WO2020150705) related to the HorvathMammalMethylChip40 and clock computation for which he is named an inventor..

Funding

National Institute on Aging (R21AG055841)

  • Khyobeni Mozhui

National Institute on Aging (R01AG043930)

  • Robert W Williams

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joris Deelen, Max Planck Institute for Biology of Ageing, Germany

Ethics

Animal experimentation: All animal procedures were in accordance to protocol approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Tennessee Health Science Center. Protocol numbers 12-148.0 (2012-2015), 15-124.0 (2015-2018), and 18-094.0 (2018-present).

Version history

  1. Preprint posted: June 24, 2021 (view preprint)
  2. Received: November 3, 2021
  3. Accepted: April 1, 2022
  4. Accepted Manuscript published: April 7, 2022 (version 1)
  5. Version of Record published: April 28, 2022 (version 2)

Copyright

© 2022, Mozhui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,010
    views
  • 285
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Khyobeni Mozhui
  2. Ake T Lu
  3. Caesar Z Li
  4. Amin Haghani
  5. Jose Vladimir Sandoval-Sierra
  6. Yibo Wu
  7. Robert W Williams
  8. Steve Horvath
(2022)
Genetic loci and metabolic states associated with murine epigenetic aging
eLife 11:e75244.
https://doi.org/10.7554/eLife.75244

Share this article

https://doi.org/10.7554/eLife.75244

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.