Contextual control of conditioned pain tolerance and endogenous analgesic systems

  1. Sydney Trask
  2. Jeffrey S Mogil
  3. Fred J Helmstetter
  4. Cheryl L Stucky
  5. Katelyn E Sadler  Is a corresponding author
  1. Purdue University, United States
  2. McGill University, Canada
  3. University of Wisconsin-Milwaukee, United States
  4. Medical College of Wisconsin, United States

Abstract

The mechanisms underlying the transition from acute to chronic pain are unclear but may involve the persistence or strengthening of pain memories acquired in part through associative learning. Contextual cues, which comprise the environment in which events occur, were recently described as a critical regulator of pain memory; both male rodents and humans exhibit increased pain sensitivity in environments recently associated with a single painful experience. It is unknown, however, how repeated exposure to an acute painful unconditioned stimulus in a distinct context modifies pain sensitivity or the expectation of pain in that environment. To answer this question, we conditioned mice to associate distinct contexts with either repeated administration of a mild visceral pain stimulus (intraperitoneal injection of acetic acid) or vehicle injection over the course of three days. On the final day of experiments animals received either an acid injection or vehicle injection prior to being placed into both contexts. In this way, contextual control of pain sensitivity and pain expectation could be tested respectively. When re-exposed to the noxious stimulus in a familiar environment, both male and female mice exhibited context-dependent conditioned analgesia, a phenomenon mediated by endogenous opioid signaling. However, when expecting the presentation of a painful stimulus in a given context, males exhibited conditioned hypersensitivity whereas females exhibited endogenous opioid-mediated conditioned analgesia. These results are evidence that pain perception and engagement of endogenous opioid systems can be modified through their psychological association with environmental cues. Successful determination of the brain circuits involved in this sexually dimorphic anticipatory response may allow for the manipulation of pain memories, which may contribute to the development of chronic pain states.

Data availability

All data generated or analyzed during this study are included in the manuscript,

Article and author information

Author details

  1. Sydney Trask

    Department of Psychological Sciences, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4396-5334
  2. Jeffrey S Mogil

    Department of Psychology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Fred J Helmstetter

    Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cheryl L Stucky

    Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4966-6594
  5. Katelyn E Sadler

    Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
    For correspondence
    ksadler@mcw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2078-3527

Funding

National Institutes of Health (K99HL155791)

  • Katelyn E Sadler

National Institutes of Health (R01NS070711)

  • Cheryl L Stucky

National Institutes of Health (R37NS108278)

  • Cheryl L Stucky

Advancing a Healthier Wisconsin

  • Cheryl L Stucky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura A Bradfield, University of Technology Sydney, Australia

Ethics

Animal experimentation: All protocols were in accordance with National Institute of Health guidelines and were approved by the Institutional Animal Care and Use Committee at the Medical College of Wisconsin (Milwaukee, WI; protocol #0383).

Version history

  1. Received: November 4, 2021
  2. Preprint posted: December 3, 2021 (view preprint)
  3. Accepted: March 10, 2022
  4. Accepted Manuscript published: March 11, 2022 (version 1)
  5. Version of Record published: March 21, 2022 (version 2)

Copyright

© 2022, Trask et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,527
    views
  • 293
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sydney Trask
  2. Jeffrey S Mogil
  3. Fred J Helmstetter
  4. Cheryl L Stucky
  5. Katelyn E Sadler
(2022)
Contextual control of conditioned pain tolerance and endogenous analgesic systems
eLife 11:e75283.
https://doi.org/10.7554/eLife.75283

Share this article

https://doi.org/10.7554/eLife.75283

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.