Body mass index and adipose distribution have opposing genetic impacts on human blood traits

  1. Christopher S Thom  Is a corresponding author
  2. Madison B Wilken
  3. Stella T Chou
  4. Ben Voight  Is a corresponding author
  1. Children's Hospital of Philadelphia, United States
  2. University of Pennsylvania, United States

Abstract

Body mass index (BMI), hyperlipidemia, and truncal adipose distribution concordantly elevate cardiovascular disease risks, but have unknown genetic effects on blood trait variation. Using Mendelian randomization, we define unexpectedly opposing roles for increased BMI and truncal adipose distribution on blood traits. Elevated genetically determined BMI and lipid levels decreased hemoglobin and hematocrit levels, consistent with clinical observations associating obesity and anemia. We found that lipid-related effects were confined to erythroid traits. In contrast, BMI affected multiple blood lineages, indicating broad effects on hematopoiesis. Increased truncal adipose distribution opposed BMI effects, increasing hemoglobin and blood cell counts across lineages. Conditional analyses indicated genes, pathways, and cell types responsible for these effects, including Leptin Receptor and other blood cell-extrinsic factors in adipocytes and endothelium that regulate hematopoietic stem and progenitor cell biology. Our findings identify novel roles for obesity on hematopoiesis, including a previously underappreciated role for genetically determined adipose distribution in determining blood cell formation and function.

Data availability

The current manuscript is a computational study based on publicly available data sets, so no primary data were generated for this manuscript. All relevant coding scripts and data sets can be found on GitHub (https://github.com/thomchr/ObesityAdiposityBloodMR) or by request.

The following previously published data sets were used
    1. van der Harst and Verweij
    (2018) CAD Summary Statistics
    Mendeley Data: doi:10.17632/2zdd47c94h.1; doi:10.17632/gbbsrpx6bs.1.

Article and author information

Author details

  1. Christopher S Thom

    Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, United States
    For correspondence
    thomc@chop.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1830-9922
  2. Madison B Wilken

    Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stella T Chou

    Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ben Voight

    Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    bvoight@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (T32HD043021)

  • Christopher S Thom

National Heart, Lung, and Blood Institute (K99HL156052)

  • Christopher S Thom

National Heart, Lung, and Blood Institute (U01HL124696)

  • Stella T Chou

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK101478)

  • Ben Voight

National Institute of Diabetes and Digestive and Kidney Diseases (UM1DK126194)

  • Ben Voight

Linda Pechenik Montague (Investigator Award)

  • Ben Voight

Children's Hospital of Philadelphia (K-readiness award)

  • Christopher S Thom

National Heart, Lung, and Blood Institute (U24HL134763)

  • Christopher S Thom

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Thom et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,149
    views
  • 162
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher S Thom
  2. Madison B Wilken
  3. Stella T Chou
  4. Ben Voight
(2022)
Body mass index and adipose distribution have opposing genetic impacts on human blood traits
eLife 11:e75317.
https://doi.org/10.7554/eLife.75317

Share this article

https://doi.org/10.7554/eLife.75317

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.