Prefrontal cortex supports speech perception in listeners with cochlear implants

  1. Arefeh Sherafati
  2. Noel Dwyer
  3. Aahana Bajracharya
  4. Mahlega Samira Hassanpour
  5. Adam T Eggebrecht
  6. Jill B Firszt
  7. Joseph P Culver
  8. Jonathan Erik Peelle  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. University of Utah, United States

Abstract

Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.

Data availability

Stimuli, data, and analysis scripts are available from https://osf.io/nkb5v/.

The following data sets were generated

Article and author information

Author details

  1. Arefeh Sherafati

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2543-0851
  2. Noel Dwyer

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Aahana Bajracharya

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  4. Mahlega Samira Hassanpour

    moran Eye Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Adam T Eggebrecht

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  6. Jill B Firszt

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  7. Joseph P Culver

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  8. Jonathan Erik Peelle

    Department of Otolaryngology, Washington University in St. Louis, Saint Louis, United States
    For correspondence
    jpeelle@wustl.edu
    Competing interests
    Jonathan Erik Peelle, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9194-854X

Funding

National Institutes of Health (R21DC015884)

  • Jonathan Erik Peelle

National Institutes of Health (R21DC016086)

  • Jonathan Erik Peelle

National Institutes of Health (K01MH103594)

  • Adam T Eggebrecht

National Institutes of Health (R21MH109775)

  • Adam T Eggebrecht

National Institutes of Health (R01NS090874)

  • Joseph P Culver

National Institutes of Health (R01NS109487)

  • Joseph P Culver

National Institutes of Health (R21DC015884)

  • Joseph P Culver

National Institutes of Health (R21DC016086)

  • Joseph P Culver

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy D Griffiths, University of Newcastle, United Kingdom

Ethics

Human subjects: All subjects were native speakers of English with no self-reported history of neurological or psychiatric disorders. All aspects of these studies were approved by the Human Research Protection Office (HRPO) of the Washington University School of Medicine. Subjects were recruited from the Washington University campus and the surrounding community (IRB 201101896, IRB 201709126). All subjects gave informed consent and were compensated for their participation in accordance with institutional and national guidelines.

Version history

  1. Preprint posted: October 16, 2021 (view preprint)
  2. Received: November 5, 2021
  3. Accepted: June 4, 2022
  4. Accepted Manuscript published: June 6, 2022 (version 1)
  5. Version of Record published: June 23, 2022 (version 2)

Copyright

© 2022, Sherafati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,427
    Page views
  • 319
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arefeh Sherafati
  2. Noel Dwyer
  3. Aahana Bajracharya
  4. Mahlega Samira Hassanpour
  5. Adam T Eggebrecht
  6. Jill B Firszt
  7. Joseph P Culver
  8. Jonathan Erik Peelle
(2022)
Prefrontal cortex supports speech perception in listeners with cochlear implants
eLife 11:e75323.
https://doi.org/10.7554/eLife.75323

Share this article

https://doi.org/10.7554/eLife.75323

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.