Prefrontal cortex supports speech perception in listeners with cochlear implants

  1. Arefeh Sherafati
  2. Noel Dwyer
  3. Aahana Bajracharya
  4. Mahlega Samira Hassanpour
  5. Adam T Eggebrecht
  6. Jill B Firszt
  7. Joseph P Culver
  8. Jonathan Erik Peelle  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. University of Utah, United States

Abstract

Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.

Data availability

Stimuli, data, and analysis scripts are available from https://osf.io/nkb5v/.

The following data sets were generated

Article and author information

Author details

  1. Arefeh Sherafati

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2543-0851
  2. Noel Dwyer

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Aahana Bajracharya

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  4. Mahlega Samira Hassanpour

    moran Eye Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Adam T Eggebrecht

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  6. Jill B Firszt

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  7. Joseph P Culver

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  8. Jonathan Erik Peelle

    Department of Otolaryngology, Washington University in St. Louis, Saint Louis, United States
    For correspondence
    jpeelle@wustl.edu
    Competing interests
    Jonathan Erik Peelle, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9194-854X

Funding

National Institutes of Health (R21DC015884)

  • Jonathan Erik Peelle

National Institutes of Health (R21DC016086)

  • Jonathan Erik Peelle

National Institutes of Health (K01MH103594)

  • Adam T Eggebrecht

National Institutes of Health (R21MH109775)

  • Adam T Eggebrecht

National Institutes of Health (R01NS090874)

  • Joseph P Culver

National Institutes of Health (R01NS109487)

  • Joseph P Culver

National Institutes of Health (R21DC015884)

  • Joseph P Culver

National Institutes of Health (R21DC016086)

  • Joseph P Culver

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy D Griffiths, University of Newcastle, United Kingdom

Ethics

Human subjects: All subjects were native speakers of English with no self-reported history of neurological or psychiatric disorders. All aspects of these studies were approved by the Human Research Protection Office (HRPO) of the Washington University School of Medicine. Subjects were recruited from the Washington University campus and the surrounding community (IRB 201101896, IRB 201709126). All subjects gave informed consent and were compensated for their participation in accordance with institutional and national guidelines.

Version history

  1. Preprint posted: October 16, 2021 (view preprint)
  2. Received: November 5, 2021
  3. Accepted: June 4, 2022
  4. Accepted Manuscript published: June 6, 2022 (version 1)
  5. Version of Record published: June 23, 2022 (version 2)

Copyright

© 2022, Sherafati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,422
    Page views
  • 317
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arefeh Sherafati
  2. Noel Dwyer
  3. Aahana Bajracharya
  4. Mahlega Samira Hassanpour
  5. Adam T Eggebrecht
  6. Jill B Firszt
  7. Joseph P Culver
  8. Jonathan Erik Peelle
(2022)
Prefrontal cortex supports speech perception in listeners with cochlear implants
eLife 11:e75323.
https://doi.org/10.7554/eLife.75323

Share this article

https://doi.org/10.7554/eLife.75323

Further reading

    1. Medicine
    2. Neuroscience
    Flora Moujaes, Jie Lisa Ji ... Alan Anticevic
    Research Article

    Background:

    Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects.

    Methods:

    We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets.

    Results:

    We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level.

    Conclusions:

    These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry.

    Funding:

    This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016–0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 – 2056) (FXV).

    Clinical trial number:

    NCT03842800

    1. Neuroscience
    Lies Deceuninck, Fabian Kloosterman
    Research Article Updated

    Storing and accessing memories is required to successfully perform day-to-day tasks, for example for engaging in a meaningful conversation. Previous studies in both rodents and primates have correlated hippocampal cellular activity with behavioral expression of memory. A key role has been attributed to awake hippocampal replay – a sequential reactivation of neurons representing a trajectory through space. However, it is unclear if awake replay impacts immediate future behavior, gradually creates and stabilizes long-term memories over a long period of time (hours and longer), or enables the temporary memorization of relevant events at an intermediate time scale (seconds to minutes). In this study, we aimed to address the uncertainty around the timeframe of impact of awake replay by collecting causal evidence from behaving rats. We detected and disrupted sharp wave ripples (SWRs) - signatures of putative replay events - using electrical stimulation of the ventral hippocampal commissure in rats that were trained on three different spatial memory tasks. In each task, rats were required to memorize a new set of locations in each trial or each daily session. Interestingly, the rats performed equally well with or without SWR disruptions. These data suggest that awake SWRs - and potentially replay - does not affect the immediate behavior nor the temporary memorization of relevant events at a short timescale that are required to successfully perform the spatial tasks. Based on these results, we hypothesize that the impact of awake replay on memory and behavior is long-term and cumulative over time.