Prefrontal cortex supports speech perception in listeners with cochlear implants

  1. Arefeh Sherafati
  2. Noel Dwyer
  3. Aahana Bajracharya
  4. Mahlega Samira Hassanpour
  5. Adam T Eggebrecht
  6. Jill B Firszt
  7. Joseph P Culver
  8. Jonathan Erik Peelle  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. University of Utah, United States

Abstract

Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.

Data availability

Stimuli, data, and analysis scripts are available from https://osf.io/nkb5v/.

The following data sets were generated

Article and author information

Author details

  1. Arefeh Sherafati

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2543-0851
  2. Noel Dwyer

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Aahana Bajracharya

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  4. Mahlega Samira Hassanpour

    moran Eye Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Adam T Eggebrecht

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  6. Jill B Firszt

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  7. Joseph P Culver

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  8. Jonathan Erik Peelle

    Department of Otolaryngology, Washington University in St. Louis, Saint Louis, United States
    For correspondence
    jpeelle@wustl.edu
    Competing interests
    Jonathan Erik Peelle, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9194-854X

Funding

National Institutes of Health (R21DC015884)

  • Jonathan Erik Peelle

National Institutes of Health (R21DC016086)

  • Jonathan Erik Peelle

National Institutes of Health (K01MH103594)

  • Adam T Eggebrecht

National Institutes of Health (R21MH109775)

  • Adam T Eggebrecht

National Institutes of Health (R01NS090874)

  • Joseph P Culver

National Institutes of Health (R01NS109487)

  • Joseph P Culver

National Institutes of Health (R21DC015884)

  • Joseph P Culver

National Institutes of Health (R21DC016086)

  • Joseph P Culver

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects were native speakers of English with no self-reported history of neurological or psychiatric disorders. All aspects of these studies were approved by the Human Research Protection Office (HRPO) of the Washington University School of Medicine. Subjects were recruited from the Washington University campus and the surrounding community (IRB 201101896, IRB 201709126). All subjects gave informed consent and were compensated for their participation in accordance with institutional and national guidelines.

Copyright

© 2022, Sherafati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,704
    views
  • 355
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arefeh Sherafati
  2. Noel Dwyer
  3. Aahana Bajracharya
  4. Mahlega Samira Hassanpour
  5. Adam T Eggebrecht
  6. Jill B Firszt
  7. Joseph P Culver
  8. Jonathan Erik Peelle
(2022)
Prefrontal cortex supports speech perception in listeners with cochlear implants
eLife 11:e75323.
https://doi.org/10.7554/eLife.75323

Share this article

https://doi.org/10.7554/eLife.75323

Further reading

    1. Neuroscience
    Sean M Perkins, Elom A Amematsro ... Mark M Churchland
    Research Article

    Decoders for brain-computer interfaces (BCIs) assume constraints on neural activity, chosen to reflect scientific beliefs while yielding tractable computations. Recent scientific advances suggest that the true constraints on neural activity, especially its geometry, may be quite different from those assumed by most decoders. We designed a decoder, MINT, to embrace statistical constraints that are potentially more appropriate. If those constraints are accurate, MINT should outperform standard methods that explicitly make different assumptions. Additionally, MINT should be competitive with expressive machine learning methods that can implicitly learn constraints from data. MINT performed well across tasks, suggesting its assumptions are well-matched to the data. MINT outperformed other interpretable methods in every comparison we made. MINT outperformed expressive machine learning methods in 37 of 42 comparisons. MINT’s computations are simple, scale favorably with increasing neuron counts, and yield interpretable quantities such as data likelihoods. MINT’s performance and simplicity suggest it may be a strong candidate for many BCI applications.

    1. Neuroscience
    Jan H Kirchner, Lucas Euler ... Julijana Gjorgjieva
    Research Article

    Dendritic branching and synaptic organization shape single-neuron and network computations. How they emerge simultaneously during brain development as neurons become integrated into functional networks is still not mechanistically understood. Here, we propose a mechanistic model in which dendrite growth and the organization of synapses arise from the interaction of activity-independent cues from potential synaptic partners and local activity-dependent synaptic plasticity. Consistent with experiments, three phases of dendritic growth – overshoot, pruning, and stabilization – emerge naturally in the model. The model generates stellate-like dendritic morphologies that capture several morphological features of biological neurons under normal and perturbed learning rules, reflecting biological variability. Model-generated dendrites have approximately optimal wiring length consistent with experimental measurements. In addition to establishing dendritic morphologies, activity-dependent plasticity rules organize synapses into spatial clusters according to the correlated activity they experience. We demonstrate that a trade-off between activity-dependent and -independent factors influences dendritic growth and synaptic location throughout development, suggesting that early developmental variability can affect mature morphology and synaptic function. Therefore, a single mechanistic model can capture dendritic growth and account for the synaptic organization of correlated inputs during development. Our work suggests concrete mechanistic components underlying the emergence of dendritic morphologies and synaptic formation and removal in function and dysfunction, and provides experimentally testable predictions for the role of individual components.