Endurance exercise ameliorates phenotypes in Drosophila models of Spinocerebellar Ataxias

Abstract

Endurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, Spinocerebellar Ataxias Type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. In this study, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, with no benefit to SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Further mechanistic investigation indicates that the exercise-inducible protein, Sestrin (Sesn), suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures and supplementary information.

Article and author information

Author details

  1. Alyson Sujkowski

    Department of Physiology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9909-9279
  2. Kristin Richardson

    Department of Physiology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew V Prifti

    Department of Pharmacology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert J Wessells

    Department of Physiology, Wayne State University, Detroit, United States
    For correspondence
    rwessell@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Sokol V Todi

    Department of Pharmacology, Wayne State University, Detroit, United States
    For correspondence
    stodi@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4399-5549

Funding

Wayne State University (Thomas C. Rumble Graduate Fellowship)

  • Alyson Sujkowski

NIH Office of the Director (R01 AG059683)

  • Robert J Wessells

NIH Office of the Director (R21 NS121276)

  • Robert J Wessells
  • Sokol V Todi

NIH Office of the Director (R01 NS086778)

  • Sokol V Todi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sujkowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,717
    views
  • 201
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alyson Sujkowski
  2. Kristin Richardson
  3. Matthew V Prifti
  4. Robert J Wessells
  5. Sokol V Todi
(2022)
Endurance exercise ameliorates phenotypes in Drosophila models of Spinocerebellar Ataxias
eLife 11:e75389.
https://doi.org/10.7554/eLife.75389

Share this article

https://doi.org/10.7554/eLife.75389

Further reading

    1. Neuroscience
    Zhiping Cao, Wing-Ho Yung, Ya Ke
    Research Article

    Mental and behavioral disorders are associated with extended period of hot weather as found in heatwaves, but the underlying neural circuit mechanism remains poorly known. The posterior paraventricular thalamus (pPVT) is a hub for emotional processing and receives inputs from the hypothalamic preoptic area (POA), the well-recognized thermoregulation center. The present study was designed to explore whether chronic heat exposure leads to aberrant activities in POA recipient pPVT neurons and subsequent changes in emotional states. By devising an air heating paradigm mimicking the condition of heatwaves and utilizing emotion-related behavioral tests, viral tract tracing, in vivo calcium recordings, optogenetic manipulations, and electrophysiological recordings, we found that chronic heat exposure for 3 weeks led to negative emotional valence and hyperarousal states in mice. The pPVT neurons receive monosynaptic excitatory and inhibitory innervations from the POA. These neurons exhibited a persistent increase in neural activity following chronic heat exposure, which was essential for chronic heat-induced emotional changes. Notably, these neurons were also prone to display stronger neuronal activities associated with anxiety responses to stressful situations. Furthermore, we observed saturated neuroplasticity in the POA-pPVT excitatory pathway after chronic heat exposure that occluded further potentiation. Taken together, long-term aberration in the POA to pPVT pathway offers a neurobiological mechanism of emotional and behavioral changes seen in extended periods of hot weather like heatwaves.

    1. Neuroscience
    Julieta Gomez-Frittelli, Gabrielle Frederique Devienne ... Julia A Kaltschmidt
    Research Article

    Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here, we investigated synaptic cell adhesion molecules as novel cell-type markers in the ENS. Our work identifies two type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and IH current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current IH disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.