A dynamic clamp protocol to artificially modify cell capacitance

  1. Paul Pfeiffer
  2. Federico José Barreda Tomás
  3. Jiameng Wu
  4. Jan-Hendrik Schleimer
  5. Imre Vida
  6. Susanne Schreiber  Is a corresponding author
  1. Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Germany
  2. Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Germany
  3. Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
  4. Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
6 figures, 4 tables and 1 additional file

Figures

Figure 1 with 1 supplement
Adding or removing artificial capacitance via the CapClamp.

(A) Physically, membrane capacitance varies with surface area, thickness and lipid composition (B) Virtual capacitance modification via the CapClamp is a form of dynamic clamp, a fast feedback loop …

Figure 1—figure supplement 1
Impedance analysis of an RC circuit coupled to the capacitance clamp.

(A) Injection of an oscillating current at 300 Hz (left) and at 3 kHz (right) to a passive cell (RC-circuit) with voltage responses clamped at an increased (middle) and a decreased capacitance …

Simulation of the capacitance clamp in a conductance based neuron model.

(A) Neurons coupled to the CapClamp are compared with control neurons with an altered capacitance (depicted as a difference in membrane area). (B) Spiking at 0.6-fold decreased (90 pF), original …

Clamping capacitance in rat dentate gyrus granule cells (DGGCs).

(A) Morphology of a DGGC (left) and response to a hyperpolarizing current injected at the soma, fit via a sum of exponential terms with a slow τ0, v0 and a fast component τ1, v1 (middle), which can …

Repetitive spiking and action potential shapes in DGGCs clamped at different capacitances.

(A) Spiking at decreased 0.6-fold (left), original (middle) and increased 3-fold (right) near capacitance Cn. (B) Spike shapes (top) and capacitance clamp currents (bottom) for increasing …

Applying the capacitance clamp to study neuronal signaling and physiology.

Temporal integration: (A) Brief current pulses of 3ms length with interstimulus intervals of 5ms and 50ms (top) and voltage responses of an exemplary DGGC at a decreased (12 pF) and an increased (62 …

Appendix 1—figure 1
Analysis of the capacitance clamp as a discrete feedback filter.

(A) Block diagram of the coupled system: RC circuit with original capacitance Cc and capacitance clamp feedback current. (B) Block diagram of the target system: RC circuit with target capacitance …

Tables

Table 1
Spike shape and firing frequency in a biophysical neuron model at 60 pA as well as f-I curve gain and local gain reduction for a decreased, the original and an increased capacitance, comparing simulations of an actually altered capacitance with the CapClamp.

Values are shown as actual(clamped).

C (pF)f (Hz)hAP(mV)wAP(ms)AHP (mV)Gain (Hz/pA)ΔGain (Hz/pA per 10 pF)
decreased 9034.9 (34.3)45.7 (55.0)0.30 (0.30)–77.8 (-79.7)6.5 (6.5)–0.67 (-0.67)
original 15022.133.90.39–71.53.8–0.22
increased 21017.8 (18.9)21.4 (20.1)0.48 (0.48)–66.0 (-64.7)2.9 (2.9)–0.11 (-0.10)
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Rattus norvegicus, male and female)Wistar Rat (wild type)Wistar Institute of Philadelphia, Pennsylvania
Peptide, recombinant proteinAvidin conjugated AlexaFluor-647Thermo Fisher ScientificRRID:AB_2336066
Software, algorithmFiji distribution of ImageJ softwareimagej.netRRID:SCR_003070
Software, algorithmNeutubeneutracing.comhttps://doi.org/10.1523/ENEURO.0049-14.2014
Software, algorithmRELACSrelacs. sourceforge.netRRID:SCR_017280
Software, algorithmRELACS CapClampThis paperhttps://doi.org/10.5281/zenodo.6322768Capacitance clamp code for RELACS, see "Data and software availability" in Appendix 1
Software, algorithmRTXIrtxi.orghttps://doi.org/10.1371/journal.pcbi.1005430
Software, algorithmRTXI CapClampThis paperhttps://doi.org/10.5281/zenodo.5553946Capacitance clamp code for RTXI, see "Data and software availability" in Appendix 1
Software, algorithmBrian 2brian-team/ brian2https://doi.org/10.7554/eLife.47314
Table 2
Multi-exponential fit and corresponding circuit parameters in the recorded dentate gyrus granule cells (N = 18) and a multicompartment model based on a reconstructed DGGC morphology (see "Multicompartment model of a dentate gyrus granule cell" in Methods).
DGGCs (mean ± std)Multicomp. model
Exp. fit
τ015.1±4.8 ms15.1 ms
R0127.1±44.6 MΩ119.2 MΩ
τ10.77±0.24 ms0.18 ms
R134.5±14.7 MΩ12.3 MΩ
Circuit
Cn21.0±9.4 pF13.0 pF
Rn854.2±394.0 MΩ1158.0 MΩ
Ra52.5±19.8 MΩ15.5 MΩ
Cf105.8±33.0 pF113.7 pF
Rf155.5±59.9 MΩ132.8 MΩ
Appendix 1—table 1
Comparison of online and offline fits to charging curves in the recorded dentate gyrus granule cells (N = 18).
Online fit (mean ± std)Offline fit (mean ± std)
Two comp.
τ014.9±4.8 ms15.1±4.8 ms
R0136.9±47.5 MΩ127.1±44.6 MΩ
τ10.41±0.23 ms0.77±0.24 ms
R125.1±14.1 MΩ34.5±14.7 MΩ
Circuit
Cn14.9±4.7 pF21.0±9.4 pF
Rn1106.3±519.3 MΩ854.2±394.0 MΩ
Ra34.9±19.9 MΩ52.5±19.8 MΩ
Cf99.1±33.7 pF105.8±33.0 pF
Rf159.6±58.1 MΩ155.5±59.9 MΩ

Additional files

Download links