Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain

Abstract

Hierarchical temporal dynamics are a fundamental computational property of the brain; however, there are no whole-brain, noninvasive investigations into timescales of neural processing in animal models. To that end, we used the spatial resolution and sensitivity of ultrahigh field fMRI performed at 10.5 Tesla to probe timescales across the whole macaque brain. We uncovered within-species consistency between timescales estimated from fMRI and electrophysiology. Crucially, we extended existing electrophysiological hierarchies to whole brain topographies. Our results validate the complementary use of hemodynamic and electrophysiological intrinsic timescales, establishing a basis for future translational work. Further, with these results in hand, we were able to show that one facet of the high-dimensional functional connectivity topography of any region in the brain is closely related to hierarchical temporal dynamics. We demonstrated that intrinsic timescales are organized along spatial gradients that closely match functional connectivity gradient topographies across the whole brain. We conclude that intrinsic timescales are a unifying organizational principle of neural processing across the whole brain.

Data availability

The functional connectivity gradient maps and the timescale maps have been uploaded to figshare.Functional connectivity gradients: https://doi.org/10.6084/m9.figshare.19189331Intrinsic neural timescales: https://doi.org/10.6084/m9.figshare.19197026

The following data sets were generated

Article and author information

Author details

  1. Ana MG Manea

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    For correspondence
    manea006@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4786-9657
  2. Anna Zilverstand

    Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4889-9700
  3. Kamil Ugurbil

    Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah Heilbronner

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jan Zimmermann

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

NIH (P41 EB027061)

  • Kamil Ugurbil
  • Jan Zimmermann

NIH (R01 MH118257)

  • Sarah Heilbronner

NIH (R56 EB031765)

  • Jan Zimmermann

NIH (R01 MH128177)

  • Jan Zimmermann

Digital Technologies Initiative

  • Jan Zimmermann

Minnesota Institute of Robotics

  • Jan Zimmermann

Young Investigator Awards from the Brain & Behavior Research Foundation

  • Anna Zilverstand
  • Sarah Heilbronner

NIH (P30DA048742)

  • Anna Zilverstand
  • Sarah Heilbronner
  • Jan Zimmermann

UMN AIRP award

  • Anna Zilverstand
  • Sarah Heilbronner
  • Jan Zimmermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were carried out in accordance with the University of Minnesota Institutional Animal Care and Use Committee and the National Institute of Health standards for the care and use of nonhuman primates. Protocol IDs: 2005-38127A 2005-38135A 1911-37623A

Copyright

© 2022, Manea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,733
    views
  • 376
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana MG Manea
  2. Anna Zilverstand
  3. Kamil Ugurbil
  4. Sarah Heilbronner
  5. Jan Zimmermann
(2022)
Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain
eLife 11:e75540.
https://doi.org/10.7554/eLife.75540

Share this article

https://doi.org/10.7554/eLife.75540

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.