Endogenous Syngap1 alpha splice forms promote cognitive function and seizure protection

  1. Murat Kilinc
  2. Vineet Arora
  3. Thomas K Creson
  4. Camilo Rojas
  5. Aliza A Le
  6. Julie Lauterborn
  7. Brent Wilkinson
  8. Nicolas Hartel
  9. Nicholas Graham
  10. Adrian Reich
  11. Gemma Gou
  12. Yoichi Araki
  13. Àlex Bayés
  14. Marcelo Coba
  15. Gary Lynch
  16. Courtney A Miller
  17. Gavin Rumbaugh  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of California, Irvine, United States
  3. University of Southern California, United States
  4. Institut d'Investigació Biomèdica Sant Pau, Spain
  5. Johns Hopkins School of Medicine, United States

Abstract

Loss-of-function variants in SYNGAP1 cause a developmental encephalopathy defined by cognitive impairment, autistic features, and epilepsy. SYNGAP1 splicing leads to expression of distinct functional protein isoforms. Splicing imparts multiple cellular functions of SynGAP proteins through coding of distinct C-terminal motifs. However, it remains unknown how these different splice sequences function in vivo to regulate neuronal function and behavior. Reduced expression of SynGAP-a1/2 C-terminal splice variants in mice caused severe phenotypes, including reduced survival, impaired learning, and reduced seizure latency. In contrast, upregulation of a1/2 expression improved learning and increased seizure latency. Mice expressing a1-specific mutations, which disrupted SynGAP cellular functions without altering protein expression, promoted seizure, disrupted synapse plasticity, and impaired learning. These findings demonstrate that endogenous SynGAP isoforms with a1/2 spliced sequences promote cognitive function and impart seizure protection. Regulation of SynGAP-a expression or function may be a viable therapeutic strategy to broadly improve cognitive function and mitigate seizure.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for western blots and mass spec experiments.

Article and author information

Author details

  1. Murat Kilinc

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Vineet Arora

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7856-0401
  3. Thomas K Creson

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Camilo Rojas

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aliza A Le

    Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Julie Lauterborn

    Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brent Wilkinson

    Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicolas Hartel

    Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicholas Graham

    Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Adrian Reich

    Bioinformatics and Statistics Core, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Gemma Gou

    Molecular Physiology of the Synapse Laboratory, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Yoichi Araki

    Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3455-9377
  13. Àlex Bayés

    Molecular Physiology of the Synapse Laboratory, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5265-6306
  14. Marcelo Coba

    Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Gary Lynch

    Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Courtney A Miller

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Gavin Rumbaugh

    Departments of Neuroscience, The Scripps Research Institute, Jupiter, United States
    For correspondence
    gavin@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6360-3894

Funding

National Institute of Mental Health (MH096847 ; MH108408)

  • Gavin Rumbaugh

Autism Speaks (#10646)

  • Murat Kilinc

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#15-037 and #15-038) of Scripps Florida.

Copyright

© 2022, Kilinc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,212
    views
  • 517
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Murat Kilinc
  2. Vineet Arora
  3. Thomas K Creson
  4. Camilo Rojas
  5. Aliza A Le
  6. Julie Lauterborn
  7. Brent Wilkinson
  8. Nicolas Hartel
  9. Nicholas Graham
  10. Adrian Reich
  11. Gemma Gou
  12. Yoichi Araki
  13. Àlex Bayés
  14. Marcelo Coba
  15. Gary Lynch
  16. Courtney A Miller
  17. Gavin Rumbaugh
(2022)
Endogenous Syngap1 alpha splice forms promote cognitive function and seizure protection
eLife 11:e75707.
https://doi.org/10.7554/eLife.75707

Share this article

https://doi.org/10.7554/eLife.75707

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.