A non-transcriptional function of Yap regulates the DNA replication program

  1. Rodrigo Meléndez García
  2. Olivier Haccard
  3. Albert Chesneau
  4. Hemalatha Narassimprakash
  5. Jérôme Roger
  6. Muriel Perron  Is a corresponding author
  7. Kathrin Marheineke  Is a corresponding author
  8. Odile Bronchain  Is a corresponding author
  1. Paris-Saclay Institute of Neuroscience, France
  2. CNRS, CEA, University Paris Sud, France

Abstract

In multicellular eukaryotic organisms, the initiation of DNA replication occurs asynchronously throughout S-phase according to a regulated replication timing program. Here, using Xenopus egg extracts, we showed that Yap (Yes-associated protein 1), a downstream effector of the Hippo signalling pathway, is required for the control of DNA replication dynamics. We found that Yap is recruited to chromatin at the start of DNA replication and identified Rif1, a major regulator of the DNA replication timing program, as a novel Yap binding protein. Furthermore, we show that either Yap or Rif1 depletion accelerates DNA replication dynamics by increasing the number of activated replication origins. In Xenopus embryos, using a Trim-Away approach during cleavage stages devoid of transcription, we found that either Yap or Rif1 depletion triggers an acceleration of cell divisions, suggesting a shorter S-phase by alterations of the replication program. Finally, our data show that Rif1 knockdown leads to defects in the partitioning of early versus late replication foci in retinal stem cells, as we previously showed for Yap. Altogether, our findings unveil a non-transcriptional role for Yap in regulating replication dynamics. We propose that Yap and Rif1 function as breaks to control the DNA replication program in early embryos and post-embryonic stem cells.

Data availability

Source data files have been provided for all Western blots and graphs shown on the figures.We have submitted our dataset "Identification of Yap-interacting proteins in Xenopus egg extracts by co-immunoprecipitation coupled to LC/MS/MS" to ProteomeXchange via the PRIDE database (Project accession: PXD029345; Project DOI: 10.6019/PXD029345).

The following data sets were generated

Article and author information

Author details

  1. Rodrigo Meléndez García

    Paris-Saclay Institute of Neuroscience, Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivier Haccard

    Genome Biology, CNRS, CEA, University Paris Sud, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4305-2746
  3. Albert Chesneau

    Paris-Saclay Institute of Neuroscience, Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Hemalatha Narassimprakash

    Genome Biology, CNRS, CEA, University Paris Sud, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jérôme Roger

    Paris-Saclay Institute of Neuroscience, Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Muriel Perron

    Paris-Saclay Institute of Neuroscience, Saclay, France
    For correspondence
    muriel.perron@universite-paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-8236
  7. Kathrin Marheineke

    Genome Biology, CNRS, CEA, University Paris Sud, Gif-sur-Yvette, France
    For correspondence
    kathrin.marheineke@i2bc.paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1514-0167
  8. Odile Bronchain

    Paris-Saclay Institute of Neuroscience, Saclay, France
    For correspondence
    odile.bronchain@universite-paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8932-8907

Funding

Association pour la Recherche sur le Cancer (NA)

  • Muriel Perron
  • Odile Bronchain

Retina France (NA)

  • Muriel Perron

Fondation Valentin Haüy (NA)

  • Muriel Perron

UNADEV (NA)

  • Muriel Perron

Conacyt (439641)

  • Rodrigo Meléndez García

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments have been carried out in accordance with the European Community Council Directive of 22 September 2010 (2010/63/EEC). All animal care and experimentation were conducted in accordance with institutional guidelines, under the institutional license C 91-471-102. The study protocols were approved by the institutional animal care committee CEEA #59 and received an authorization by the Direction Départementale de la Protection des Populations under the reference APAFIS#998-2015062510022908v2 for Xenopus experiments.

Reviewing Editor

  1. Sigolène M Meilhac, Imagine-Institut Pasteur, France

Publication history

  1. Preprint posted: November 19, 2021 (view preprint)
  2. Received: November 22, 2021
  3. Accepted: July 14, 2022
  4. Accepted Manuscript published: July 15, 2022 (version 1)
  5. Version of Record published: July 27, 2022 (version 2)

Copyright

© 2022, Meléndez García et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 902
    Page views
  • 375
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rodrigo Meléndez García
  2. Olivier Haccard
  3. Albert Chesneau
  4. Hemalatha Narassimprakash
  5. Jérôme Roger
  6. Muriel Perron
  7. Kathrin Marheineke
  8. Odile Bronchain
(2022)
A non-transcriptional function of Yap regulates the DNA replication program
eLife 11:e75741.
https://doi.org/10.7554/eLife.75741
  1. Further reading

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Shawn P Shortill, Mia S Frier ... Elizabeth Conibear
    Research Article Updated

    Membrane trafficking pathways perform important roles in establishing and maintaining the endosomal network. Retrograde protein sorting from the endosome is promoted by conserved SNX-BAR-containing coat complexes including retromer which enrich cargo at tubular microdomains and generate transport carriers. In metazoans, retromer cooperates with VARP, a conserved VPS9-domain GEF, to direct an endosomal recycling pathway. The function of the yeast VARP homolog Vrl1 has been overlooked due to an inactivating mutation found in commonly studied strains. Here, we demonstrate that Vrl1 has features of a SNX-BAR coat protein and forms an obligate complex with Vin1, the paralog of the retromer SNX-BAR protein Vps5. Unique features in the Vin1 N-terminus allow Vrl1 to distinguish it from Vps5, thereby forming a complex that we have named VINE. The VINE complex occupies endosomal tubules and redistributes a conserved mannose 6-phosphate receptor-like protein from endosomes. We also find that membrane recruitment by Vin1 is essential for Vrl1 GEF activity, suggesting that VINE is a multifunctional coat complex that regulates trafficking and signaling events at the endosome.

    1. Cell Biology
    Jill T Kuwabara, Akitoshi Hara ... Michelle D Tallquist
    Research Article

    Fibroblasts produce the majority of collagen in the heart and are thought to regulate extracellular matrix (ECM) turnover. Although fibrosis accompanies many cardiac pathologies and is generally deleterious, the role of fibroblasts in maintaining the basal ECM network and in fibrosis in vivo is poorly understood. We genetically ablated fibroblasts in mice to evaluate the impact on homeostasis of adult ECM and cardiac function after injury. Fibroblast-ablated mice demonstrated a substantive reduction in cardiac fibroblasts, but fibrillar collagen and the ECM proteome were not overtly altered when evaluated by quantitative mass spectrometry and N-terminomics. However, the distribution and quantity of collagen VI, a microfibrillar collagen that forms an open network with the basement membrane, was reduced. In fibroblast-ablated mice, cardiac function was better preserved following angiotensin II/phenylephrine (AngII/PE)-induced fibrosis and myocardial infarction (MI). Analysis of cardiomyocyte function demonstrated altered sarcomere shortening and slowed calcium decline in both uninjured and AngII/PE infused fibroblast-ablated mice. After MI, the residual resident fibroblasts responded to injury, albeit with reduced proliferation and numbers immediately after injury. These results indicate that the adult mouse heart tolerates a significant degree of fibroblast loss with potentially beneficial impact on cardiac function after injury. The cardioprotective effect of controlled fibroblast reduction may have therapeutic value in heart disease.