A non-transcriptional function of Yap regulates the DNA replication program

  1. Rodrigo Meléndez García
  2. Olivier Haccard
  3. Albert Chesneau
  4. Hemalatha Narassimprakash
  5. Jérôme Roger
  6. Muriel Perron  Is a corresponding author
  7. Kathrin Marheineke  Is a corresponding author
  8. Odile Bronchain  Is a corresponding author
  1. Paris-Saclay Institute of Neuroscience, France
  2. CNRS, CEA, University Paris Sud, France

Abstract

In multicellular eukaryotic organisms, the initiation of DNA replication occurs asynchronously throughout S-phase according to a regulated replication timing program. Here, using Xenopus egg extracts, we showed that Yap (Yes-associated protein 1), a downstream effector of the Hippo signalling pathway, is required for the control of DNA replication dynamics. We found that Yap is recruited to chromatin at the start of DNA replication and identified Rif1, a major regulator of the DNA replication timing program, as a novel Yap binding protein. Furthermore, we show that either Yap or Rif1 depletion accelerates DNA replication dynamics by increasing the number of activated replication origins. In Xenopus embryos, using a Trim-Away approach during cleavage stages devoid of transcription, we found that either Yap or Rif1 depletion triggers an acceleration of cell divisions, suggesting a shorter S-phase by alterations of the replication program. Finally, our data show that Rif1 knockdown leads to defects in the partitioning of early versus late replication foci in retinal stem cells, as we previously showed for Yap. Altogether, our findings unveil a non-transcriptional role for Yap in regulating replication dynamics. We propose that Yap and Rif1 function as breaks to control the DNA replication program in early embryos and post-embryonic stem cells.

Data availability

Source data files have been provided for all Western blots and graphs shown on the figures.We have submitted our dataset "Identification of Yap-interacting proteins in Xenopus egg extracts by co-immunoprecipitation coupled to LC/MS/MS" to ProteomeXchange via the PRIDE database (Project accession: PXD029345; Project DOI: 10.6019/PXD029345).

The following data sets were generated

Article and author information

Author details

  1. Rodrigo Meléndez García

    Paris-Saclay Institute of Neuroscience, Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivier Haccard

    Genome Biology, CNRS, CEA, University Paris Sud, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4305-2746
  3. Albert Chesneau

    Paris-Saclay Institute of Neuroscience, Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Hemalatha Narassimprakash

    Genome Biology, CNRS, CEA, University Paris Sud, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jérôme Roger

    Paris-Saclay Institute of Neuroscience, Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Muriel Perron

    Paris-Saclay Institute of Neuroscience, Saclay, France
    For correspondence
    muriel.perron@universite-paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-8236
  7. Kathrin Marheineke

    Genome Biology, CNRS, CEA, University Paris Sud, Gif-sur-Yvette, France
    For correspondence
    kathrin.marheineke@i2bc.paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1514-0167
  8. Odile Bronchain

    Paris-Saclay Institute of Neuroscience, Saclay, France
    For correspondence
    odile.bronchain@universite-paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8932-8907

Funding

Association pour la Recherche sur le Cancer (NA)

  • Muriel Perron
  • Odile Bronchain

Retina France (NA)

  • Muriel Perron

Fondation Valentin Haüy (NA)

  • Muriel Perron

UNADEV (NA)

  • Muriel Perron

Conacyt (439641)

  • Rodrigo Meléndez García

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sigolène M Meilhac, Imagine-Institut Pasteur, France

Ethics

Animal experimentation: All animal experiments have been carried out in accordance with the European Community Council Directive of 22 September 2010 (2010/63/EEC). All animal care and experimentation were conducted in accordance with institutional guidelines, under the institutional license C 91-471-102. The study protocols were approved by the institutional animal care committee CEEA #59 and received an authorization by the Direction Départementale de la Protection des Populations under the reference APAFIS#998-2015062510022908v2 for Xenopus experiments.

Version history

  1. Preprint posted: November 19, 2021 (view preprint)
  2. Received: November 22, 2021
  3. Accepted: July 14, 2022
  4. Accepted Manuscript published: July 15, 2022 (version 1)
  5. Version of Record published: July 27, 2022 (version 2)

Copyright

© 2022, Meléndez García et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,605
    views
  • 469
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rodrigo Meléndez García
  2. Olivier Haccard
  3. Albert Chesneau
  4. Hemalatha Narassimprakash
  5. Jérôme Roger
  6. Muriel Perron
  7. Kathrin Marheineke
  8. Odile Bronchain
(2022)
A non-transcriptional function of Yap regulates the DNA replication program
eLife 11:e75741.
https://doi.org/10.7554/eLife.75741

Share this article

https://doi.org/10.7554/eLife.75741

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.