A non-transcriptional function of Yap regulates the DNA replication program
Abstract
In multicellular eukaryotic organisms, the initiation of DNA replication occurs asynchronously throughout S-phase according to a regulated replication timing program. Here, using Xenopus egg extracts, we showed that Yap (Yes-associated protein 1), a downstream effector of the Hippo signalling pathway, is required for the control of DNA replication dynamics. We found that Yap is recruited to chromatin at the start of DNA replication and identified Rif1, a major regulator of the DNA replication timing program, as a novel Yap binding protein. Furthermore, we show that either Yap or Rif1 depletion accelerates DNA replication dynamics by increasing the number of activated replication origins. In Xenopus embryos, using a Trim-Away approach during cleavage stages devoid of transcription, we found that either Yap or Rif1 depletion triggers an acceleration of cell divisions, suggesting a shorter S-phase by alterations of the replication program. Finally, our data show that Rif1 knockdown leads to defects in the partitioning of early versus late replication foci in retinal stem cells, as we previously showed for Yap. Altogether, our findings unveil a non-transcriptional role for Yap in regulating replication dynamics. We propose that Yap and Rif1 function as breaks to control the DNA replication program in early embryos and post-embryonic stem cells.
Data availability
Source data files have been provided for all Western blots and graphs shown on the figures.We have submitted our dataset "Identification of Yap-interacting proteins in Xenopus egg extracts by co-immunoprecipitation coupled to LC/MS/MS" to ProteomeXchange via the PRIDE database (Project accession: PXD029345; Project DOI: 10.6019/PXD029345).
Article and author information
Author details
Funding
Association pour la Recherche sur le Cancer (NA)
- Muriel Perron
- Odile Bronchain
Retina France (NA)
- Muriel Perron
Fondation Valentin Haüy (NA)
- Muriel Perron
UNADEV (NA)
- Muriel Perron
Conacyt (439641)
- Rodrigo Meléndez García
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal experiments have been carried out in accordance with the European Community Council Directive of 22 September 2010 (2010/63/EEC). All animal care and experimentation were conducted in accordance with institutional guidelines, under the institutional license C 91-471-102. The study protocols were approved by the institutional animal care committee CEEA #59 and received an authorization by the Direction Départementale de la Protection des Populations under the reference APAFIS#998-2015062510022908v2 for Xenopus experiments.
Copyright
© 2022, Meléndez García et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,663
- views
-
- 478
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
The accumulation of SIRT4 in the nuclei of kidney cells drives kidney fibrosis, so blocking the movement of this protein could be a potential therapeutic strategy against fibrosis.
-
- Cell Biology
- Developmental Biology
Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.