Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes

  1. Ching-Ho Chang  Is a corresponding author
  2. Lauren E Gregory
  3. Kathleen E Gordon
  4. Colin D Meiklejohn
  5. Amanda M Larracuente  Is a corresponding author
  1. University of Rochester, United States
  2. Cornell University, United States
  3. University of Nebraska-Lincoln, United States

Abstract

Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.

Data availability

Genomic DNA sequence reads are in NCBI's SRA under BioProject PRJNA748438.All scripts and pipelines are available in GitHub(https://github.com/LarracuenteLab/simclade_Y) and the Dryad digital repository (doi:10.5061/dryad.280gb5mr6).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ching-Ho Chang

    Department of Biology, University of Rochester, Rochester, United States
    For correspondence
    cchang2@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9361-1190
  2. Lauren E Gregory

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kathleen E Gordon

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Colin D Meiklejohn

    School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2708-8316
  5. Amanda M Larracuente

    Department of Biology, University of Rochester, Rochester, United States
    For correspondence
    alarracu@UR.Rochester.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of General Medical Sciences (R35GM119515)

  • Amanda M Larracuente

National Institute of General Medical Sciences (R01GM123194)

  • Colin D Meiklejohn

National Science Foundation (MCB 1844693)

  • Amanda M Larracuente

Damon Runyon Cancer Research Foundation (DRG: 2438-21)

  • Ching-Ho Chang

College of Arts and Sciences, University of Nebraska-Lincoln

  • Colin D Meiklejohn

University of Rochester

  • Amanda M Larracuente

University of Rochester

  • Ching-Ho Chang

Ministry of Education, Taiwan

  • Ching-Ho Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,761
    views
  • 361
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ching-Ho Chang
  2. Lauren E Gregory
  3. Kathleen E Gordon
  4. Colin D Meiklejohn
  5. Amanda M Larracuente
(2022)
Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes
eLife 11:e75795.
https://doi.org/10.7554/eLife.75795

Share this article

https://doi.org/10.7554/eLife.75795

Further reading

    1. Evolutionary Biology
    Xuankun Li, Adriana E Marvaldi ... Duane D McKenna
    Research Article

    The rise of angiosperms to ecological dominance and the breakup of Gondwana during the Mesozoic marked major transitions in the evolutionary history of insect-plant interactions. To elucidate how contemporary trophic interactions were influenced by host plant shifts and palaeogeographical events, we integrated molecular data with information from the fossil record to construct a time tree for ancient phytophagous weevils of the beetle family Belidae. Our analyses indicate that crown-group Belidae originated approximately 138 Ma ago in Gondwana, associated with Pinopsida (conifer) host plants, with larvae likely developing in dead/decaying branches. Belids tracked their host plants as major plate movements occurred during Gondwana’s breakup, surviving on distant, disjunct landmasses. Some belids shifted to Angiospermae and Cycadopsida when and where conifers declined, evolving new trophic interactions, including brood-pollination mutualisms with cycads and associations with achlorophyllous parasitic angiosperms. Extant radiations of belids in the genera Rhinotia (Australian region) and Proterhinus (Hawaiian Islands) have relatively recent origins.

    1. Evolutionary Biology
    Amanda D Melin
    Insight

    Studying the fecal microbiota of wild baboons helps provide new insight into the factors that influence biological aging.