Contextual effects in sensorimotor adaptation adhere to associative learning rules

  1. Guy Avraham  Is a corresponding author
  2. Jordan A Taylor
  3. Assaf Breska
  4. Richard B Ivry
  5. Samuel David McDougle  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Princeton University, United States
  3. Yale University, United States

Abstract

Traditional associative learning tasks focus on the formation of associations between salient events and arbitrary stimuli that predict those events. This is exemplified in cerebellar-dependent delay eyeblink conditioning, where arbitrary cues such as a light or tone act as conditioning stimuli (CSs) that predict aversive sensations at the cornea (unconditioned stimulus, US). Here we ask if a similar framework could be applied to another type of cerebellar-dependent sensorimotor learning – sensorimotor adaptation. Models of sensorimotor adaptation posit that the introduction of an environmental perturbation results in an error signal that is used to update an internal model of a sensorimotor map for motor planning. Here we take a step towards an integrative account of these two forms of cerebellar-dependent learning, examining the relevance of core concepts from associative learning for sensorimotor adaptation. Using a visuomotor adaptation reaching task, we paired movement-related feedback (US) with neutral auditory or visual contextual cues that served as conditioning stimuli (CSs). Trial-by-trial changes in feedforward movement kinematics exhibited three key signatures of associative learning: Differential conditioning, sensitivity to the CS-US interval, and compound conditioning. Moreover, after compound conditioning, a robust negative correlation was observed between responses to the two elemental CSs of the compound (i.e., overshadowing), consistent with the additivity principle posited by theories of associative learning. The existence of associative learning effects in sensorimotor adaptation provides a proof-of-concept for linking cerebellar-dependent learning paradigms within a common theoretical framework.

Data availability

All data generated or analysed during this study are included in the manuscript; Source Data files have been provided for Figures 2B, 2C, 2D, 5B, 6B, 6C, 6D, 7B, 7C, 7D, 8B, 8C, 8E and 8F.All raw data files and codes for data analysis and simulations are available from the GitHub repository: https://github.com/guyavr/AssociativeMotorAdaptation.git

Article and author information

Author details

  1. Guy Avraham

    Department of Psychology, University of California, Berkeley, Berkeley, United States
    For correspondence
    guyavraham@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6170-1041
  2. Jordan A Taylor

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. Assaf Breska

    Department of Psychology, University of California, Berkeley, Berkeley,, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6233-073X
  4. Richard B Ivry

    Department of Psychology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Richard B Ivry, Senior editor, eLife, and a co-founder with equity in Magnetic Tides, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4728-5130
  5. Samuel David McDougle

    Department of Psychology, Yale University, New Haven, United States
    For correspondence
    samuel.mcdougle@yale.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8100-4238

Funding

National Institutes of Health (NS084948)

  • Jordan A Taylor

National Science Foundation (1838462)

  • Jordan A Taylor

National Science Foundation (1827550)

  • Jordan A Taylor

Office of Naval Research (N00014-18-1-2873)

  • Jordan A Taylor

National Institutes of Health (NS116883)

  • Richard B Ivry

National Institutes of Health (DC077091)

  • Richard B Ivry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Taraz Lee, University of Michigan, United States

Ethics

Human subjects: The study was approved by the Institutional Review Board at the University of California, Berkeley (Protocol 2016-02-8439) and adhered to the principles expressed in the Declaration of Helsinki. All participants provided written informed consent to participate in the study.

Version history

  1. Preprint posted: September 15, 2020 (view preprint)
  2. Received: November 24, 2021
  3. Accepted: October 4, 2022
  4. Accepted Manuscript published: October 5, 2022 (version 1)
  5. Version of Record published: November 4, 2022 (version 2)

Copyright

© 2022, Avraham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,259
    Page views
  • 314
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guy Avraham
  2. Jordan A Taylor
  3. Assaf Breska
  4. Richard B Ivry
  5. Samuel David McDougle
(2022)
Contextual effects in sensorimotor adaptation adhere to associative learning rules
eLife 11:e75801.
https://doi.org/10.7554/eLife.75801

Share this article

https://doi.org/10.7554/eLife.75801

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.