Contextual effects in sensorimotor adaptation adhere to associative learning rules

  1. Guy Avraham  Is a corresponding author
  2. Jordan A Taylor
  3. Assaf Breska
  4. Richard B Ivry
  5. Samuel David McDougle  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Princeton University, United States
  3. Yale University, United States

Abstract

Traditional associative learning tasks focus on the formation of associations between salient events and arbitrary stimuli that predict those events. This is exemplified in cerebellar-dependent delay eyeblink conditioning, where arbitrary cues such as a light or tone act as conditioning stimuli (CSs) that predict aversive sensations at the cornea (unconditioned stimulus, US). Here we ask if a similar framework could be applied to another type of cerebellar-dependent sensorimotor learning – sensorimotor adaptation. Models of sensorimotor adaptation posit that the introduction of an environmental perturbation results in an error signal that is used to update an internal model of a sensorimotor map for motor planning. Here we take a step towards an integrative account of these two forms of cerebellar-dependent learning, examining the relevance of core concepts from associative learning for sensorimotor adaptation. Using a visuomotor adaptation reaching task, we paired movement-related feedback (US) with neutral auditory or visual contextual cues that served as conditioning stimuli (CSs). Trial-by-trial changes in feedforward movement kinematics exhibited three key signatures of associative learning: Differential conditioning, sensitivity to the CS-US interval, and compound conditioning. Moreover, after compound conditioning, a robust negative correlation was observed between responses to the two elemental CSs of the compound (i.e., overshadowing), consistent with the additivity principle posited by theories of associative learning. The existence of associative learning effects in sensorimotor adaptation provides a proof-of-concept for linking cerebellar-dependent learning paradigms within a common theoretical framework.

Data availability

All data generated or analysed during this study are included in the manuscript; Source Data files have been provided for Figures 2B, 2C, 2D, 5B, 6B, 6C, 6D, 7B, 7C, 7D, 8B, 8C, 8E and 8F.All raw data files and codes for data analysis and simulations are available from the GitHub repository: https://github.com/guyavr/AssociativeMotorAdaptation.git

Article and author information

Author details

  1. Guy Avraham

    Department of Psychology, University of California, Berkeley, Berkeley, United States
    For correspondence
    guyavraham@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6170-1041
  2. Jordan A Taylor

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. Assaf Breska

    Department of Psychology, University of California, Berkeley, Berkeley,, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6233-073X
  4. Richard B Ivry

    Department of Psychology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Richard B Ivry, Senior editor, eLife, and a co-founder with equity in Magnetic Tides, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4728-5130
  5. Samuel David McDougle

    Department of Psychology, Yale University, New Haven, United States
    For correspondence
    samuel.mcdougle@yale.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8100-4238

Funding

National Institutes of Health (NS084948)

  • Jordan A Taylor

National Science Foundation (1838462)

  • Jordan A Taylor

National Science Foundation (1827550)

  • Jordan A Taylor

Office of Naval Research (N00014-18-1-2873)

  • Jordan A Taylor

National Institutes of Health (NS116883)

  • Richard B Ivry

National Institutes of Health (DC077091)

  • Richard B Ivry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Institutional Review Board at the University of California, Berkeley (Protocol 2016-02-8439) and adhered to the principles expressed in the Declaration of Helsinki. All participants provided written informed consent to participate in the study.

Reviewing Editor

  1. Taraz Lee, University of Michigan, United States

Version history

  1. Preprint posted: September 15, 2020 (view preprint)
  2. Received: November 24, 2021
  3. Accepted: October 4, 2022
  4. Accepted Manuscript published: October 5, 2022 (version 1)
  5. Version of Record published: November 4, 2022 (version 2)

Copyright

© 2022, Avraham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,093
    Page views
  • 289
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guy Avraham
  2. Jordan A Taylor
  3. Assaf Breska
  4. Richard B Ivry
  5. Samuel David McDougle
(2022)
Contextual effects in sensorimotor adaptation adhere to associative learning rules
eLife 11:e75801.
https://doi.org/10.7554/eLife.75801

Further reading

    1. Neuroscience
    Amanda J González Segarra, Gina Pontes ... Kristin Scott
    Research Article

    Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.

    1. Neuroscience
    Lucas Y Tian, Timothy L Warren ... Michael S Brainard
    Research Article

    Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.