Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane

  1. Siyoung Kim
  2. Jeeyun Chung
  3. Henning Arlt
  4. Alexander J Pak
  5. Robert V Farese Jnr
  6. Tobias C Walther
  7. Gregory A Voth  Is a corresponding author
  1. University of Chicago, United States
  2. Harvard T H Chan School of Public Health, United States
  3. Colorado School of Mines, United States
  4. Howard Hughes Medical Institute, Harvard T H Chan School of Public Health, United States

Abstract

Lipid droplets (LDs) are organelles formed in the endoplasmic reticulum (ER) to store triacylglycerol (TG) and sterol esters. The ER protein seipin is key for LD biogenesis. Seipin forms a cage-like structure, with each seipin monomer containing a conserved hydrophobic helix (HH) and two transmembrane (TM) segments. How the different parts of seipin function in TG nucleation and LD budding is poorly understood. Here, we utilized molecular dynamics simulations of human seipin, along with cell-based experiments, to study seipin's functions in protein-lipid interactions, lipid diffusion, and LD maturation. An all-atom (AA) simulation indicates that seipin TM segment residues and hydrophobic helices residues located in the phospholipid (PL) tail region of the bilayer attract TG. Simulating larger, growing LDs with coarse-grained (CG) models, we find that the seipin TM segments form a constricted neck structure to facilitate conversion of a flat oil lens into a budding LD. Using cell experiments and simulations, we also show that conserved, positively charged residues at the end of seipin's TM segments affect LD maturation. We propose a model in which seipin TM segments critically function in TG nucleation and LD growth.

Data availability

Numerical data represented as a graph in this manuscript are available at github.com/ksy141/seipin.

Article and author information

Author details

  1. Siyoung Kim

    Pritzker School of Molecular Engineering, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeeyun Chung

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Henning Arlt

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander J Pak

    Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert V Farese Jnr

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8103-2239
  6. Tobias C Walther

    Howard Hughes Medical Institute, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregory A Voth

    Department of Chemistry, University of Chicago, Chicago, United States
    For correspondence
    gavoth@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3267-6748

Funding

National Institutes of Health

  • Robert V Farese Jnr
  • Tobias C Walther
  • Gregory A Voth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,912
    views
  • 398
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siyoung Kim
  2. Jeeyun Chung
  3. Henning Arlt
  4. Alexander J Pak
  5. Robert V Farese Jnr
  6. Tobias C Walther
  7. Gregory A Voth
(2022)
Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane
eLife 11:e75808.
https://doi.org/10.7554/eLife.75808

Share this article

https://doi.org/10.7554/eLife.75808

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.