Distinct roles for two Caenorhabditis elegans acid-sensing ion channels in an ultradian clock

  1. Eva Kaulich
  2. Trae Carroll
  3. Brian Ackley
  4. Yi-Quan Tang
  5. Iris Hardege
  6. Keith Nehrke
  7. William R Schafer  Is a corresponding author
  8. Denise S Walker  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. University of Rochester, United States
  3. University of Kansas, United States
  4. Fudan University, China

Abstract

Biological clocks are fundamental to an organism’s health, controlling periodicity of behaviour and metabolism. Here, we identify two acid-sensing ion channels, with very different proton sensing properties, and describe their role in an ultradian clock, the defecation motor program (DMP) of the nematode Caenorhabditis elegans. An ACD-5-containing channel, on the apical membrane of the intestinal epithelium, is essential for maintenance of luminal acidity, and thus the rhythmic oscillations in lumen pH. In contrast, the second channel, composed of FLR-1, ACD-3 and/or DEL-5, located on the basolateral membrane, controls the intracellular Ca2+ wave and forms a core component of the master oscillator that controls timing and rhythmicity of the DMP. flr-1 and acd-3/del-5 mutants show severe developmental and metabolic defects. We thus directly link the proton-sensing properties of these channels to their physiological roles in pH regulation and Ca2+ signalling, the generation of an ultradian oscillator, and its metabolic consequences.

Data availability

All data generated or analysed during this study are included in the manuscript

Article and author information

Author details

  1. Eva Kaulich

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0868-3702
  2. Trae Carroll

    Department of Pathology and Lab Medicine, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brian Ackley

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1257-2407
  4. Yi-Quan Tang

    Institutes of Brain Science, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Iris Hardege

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Keith Nehrke

    Department of Medicine, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. William R Schafer

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    wschafer@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6676-8034
  8. Denise S Walker

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    dwalker@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1534-1679

Funding

Medical Research Council (MC-A023-5PB91)

  • William R Schafer

Wellcome Trust (WT103784MA)

  • William R Schafer

KU Center for Chemical Biology of Infectious Diseases (P20GM113117)

  • Brian Ackley

National Institutes of Health (R01AG067617)

  • Keith Nehrke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Manuel Zimmer, University of Vienna, Austria

Publication history

  1. Preprint posted: November 17, 2021 (view preprint)
  2. Received: November 24, 2021
  3. Accepted: June 1, 2022
  4. Accepted Manuscript published: June 6, 2022 (version 1)
  5. Version of Record published: August 12, 2022 (version 2)
  6. Version of Record updated: August 22, 2022 (version 3)

Copyright

© 2022, Kaulich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 915
    Page views
  • 307
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eva Kaulich
  2. Trae Carroll
  3. Brian Ackley
  4. Yi-Quan Tang
  5. Iris Hardege
  6. Keith Nehrke
  7. William R Schafer
  8. Denise S Walker
(2022)
Distinct roles for two Caenorhabditis elegans acid-sensing ion channels in an ultradian clock
eLife 11:e75837.
https://doi.org/10.7554/eLife.75837

Further reading

    1. Cell Biology
    Emmeline Marchal-Duval, Méline Homps-Legrand ... Arnaud A Mailleux
    Research Article

    Matrix remodeling is a salient feature of idiopathic pulmonary fibrosis (IPF). Targeting cells driving matrix remodeling could be a promising avenue for IPF treatment. Analysis of transcriptomic database identified the mesenchymal transcription factor PRRX1 as upregulated in IPF. PRRX1, strongly expressed by lung fibroblasts, was regulated by a TGF-b/PGE2 balance in vitro in control and IPF human lung fibroblasts, while IPF fibroblast-derived matrix increased PRRX1 expression in a PDGFR dependent manner in control ones. PRRX1 inhibition decreased human lung fibroblast proliferation by downregulating the expression of S phase cyclins. PRRX1 inhibition also impacted TGF-β driven myofibroblastic differentiation by inhibiting SMAD2/3 phosphorylation through phosphatase PPM1A upregulation and TGFBR2 downregulation, leading to TGF-β response global decrease. Finally, targeted inhibition of Prrx1 attenuated fibrotic remodeling in vivo with intra-tracheal antisense oligonucleotides in bleomycin mouse model of lung fibrosis and ex vivo using human and mouse precision-cut lung slices. Our results identified PRRX1 as a key mesenchymal transcription factor during lung fibrogenesis.

    1. Cell Biology
    2. Neuroscience
    Meghan E Wynne, Oluwaseun Ogunbona ... Victor Faundez
    Research Article Updated

    Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer’s disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.