Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target

  1. Ujjwal Neogi  Is a corresponding author
  2. Nazif Elaldi
  3. Sofia Appelberg
  4. Anoop Ambikan
  5. Emma Kennedy
  6. Stuart Dowall
  7. Binnur K Bagci
  8. Soham Gupta
  9. Jimmy E Rodriguez
  10. Sara Svensson-Akusjärvi
  11. Vanessa Monteil
  12. Akos Vegvari
  13. Rui Benfeitas
  14. Akhil Banerjea
  15. Friedemann Weber
  16. Roger Hewson
  17. Ali Mirazimi  Is a corresponding author
  1. The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Sweden
  2. Manipal Institute of Virology (MIV), Manipal Academy of Higher Education, India
  3. Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Cumhuriyet University, Turkey
  4. Public Health Agency of Sweden, Sweden
  5. Public Health England, Porton Down, United Kingdom
  6. Oxford Brookes University, United Kingdom
  7. Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Turkey
  8. Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
  9. Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Sweden
  10. National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Sweden
  11. National Institute of Immunology, Aruna Asaf Ali Marg, India
  12. Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Germany
  13. Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
  14. National Veterinary Institute, Sweden
6 figures, 1 table and 5 additional files

Figures

Figure 1 with 3 supplements
Differential gene expression and pathway analysis between acute and recovery phases.

(A) Heatmap of Z-score transformed expression values of significantly regulated genes in the pair-wise comparisons namely recovered vs. acute (overall), recovered vs. acute (SG-1), recovered vs. acute (SG-2). The columns represent the patient samples and their corresponding severity groups at different time points. The rows represent genes that are hierarchically clustered based on Euclidean distance. (B) Pathways were found to be significantly regulated (adj. p < 0.05) by genes expressed at the acute infection phase compared to recovered phase. The heatmap visualizes negative log scaled adjusted p-values of different directionality classes. Non-directional p-values were generated based on gene-level statistics alone without considering the expression direction. The mixed-directional p-values were calculated using subset of gene-level statistics of up and down-regulated genes respectively for mixed-directional up and down. Distinct directional up and distinct directional down p-values are calculated from gene statistics with expression direction (C) Network visualization of significant reporter metabolites (adj. p < 0.1) and reporter subsystems (pathways) identified in acute compared to recovered. The yellow node denotes reporter metabolite and blue node denotes reporter subsystems. Light red and green colored nodes represent upregulated and downregulated genes respectively. Each edge in the network denotes association of genes with reporter metabolites and subsystems based on the human genome-scale metabolic model. (D) Venn diagram of significantly up-regulated genes in recovered vs acute (SG-1) and recovered vs acute (SG-2) phases (E) Venn diagram of significantly down-regulated genes in recovered vs. acute (SG-1) and recovered vs. acute (SG-2) phases. (F) Gene ontology (GO, biological process) enrichment analysis results of commonly regulated genes (882 upregulated and 569 down-regulated) from (D) and (E). The color gradient and bubble size correspond to the gene ratio of each GO term and the adjusted p-value of the enrichment test, respectively. The adjacent bar graph represents the percentage of genes upregulated or downregulated in each GO term.

Figure 1—figure supplement 1
Digital cell quantification using EPIC.
Figure 1—figure supplement 2
Severity group association with gene expression.

(A) MA-plot of differentially regulated genes during the acute phase between samples of severity group 1 and severity group 2 and 3. (B) Sample distribution during the acute phase of infection in different severity groups as reported.

Figure 1—figure supplement 3
Violin plot of 22 soluble markers as determined from Luminex assay assays.
Differentially expressed genes in interferon (IFN) signaling pathways.

(A) Heatmap visualizes the expression pattern of IFN-signaling genes (including ISGs) significantly different between the recovered and acute phases. The columns represent the patient samples and their corresponding severity groups at different time points. The rows represent genes hierarchically clustered based on Euclidean distance. (B) MA-plot of differentially regulated genes between the recovered and acute phases. ISGs are marked. (C) RNAscope analysis targeting IFI27 genes in infected and non-infected cells. (D) Spearman correlation between viral load and IFN signaling genes (adj p < 0.05).

Figure 3 with 2 supplements
Weighted co-expression network analysis.

(A) Network visualization of seven gene co-expression communities identified. Nodes and node size represent genes and their centrality (degree) respectively and edges represent significant Spearman correlation (adj p < 0.001 and R > 84). Key significantly regulated pathways (adj. p < 0.05) in each community are labeled. (B) Heatmap of correlations among top 5% central genes in each community. Column and row annotation denotes corresponding communities. (C) Heatmap of significant correlation (adj. p < 0.05) between key metabolic and signaling pathways mentioned in (A). Column and row annotation denotes corresponding pathways.

Figure 3—figure supplement 1
Gene set enrichment analysis of the individual communities.
Figure 3—figure supplement 2
Weight co-expression network of the negatively co-related genes We observed a high number of negative correlations between this community (c1) and those associated with Notch, mTOR, and FoxO signaling (c5) and HIF-1 signaling (c7).
Figure 4 with 1 supplement
LC-MS/MS-based quantitative proteomics analysis in CCHFV-infected Huh7 and SW13 cells.

(A) Principal component analysis of proteomics samples of Huh7 cells and SW13 (inset) using only human proteins. (B) Identification of the CCHFV N (UniProtKB P89522.1), M (UniProtKB Q8JSZ3.1) and L (UniProtKB Q6TQR6.2) protein in the quantitative proteomics analysis. (C) Immunofluorescence staining of the CCHFV nucleoprotein to assess the infectivity. (D) Significantly regulated pathways (adj p < 0.05) in any of the pair-wise proteomics analyses in Huh7 and SW13 cells. The heatmap visualizes negative log scaled adjusted p-values of different directionality classes. Non-directional p-values are generated based on gene-level statistics alone without considering the expression direction. The mixed-directional p-values are calculated using subset of gene-level statistics of up and down-regulated genes respectively for mixed-directional up and down. Distinct directional up and distinct directional down p-values are calculated from gene statistics with expression direction. The first column annotation represents directionality of pathways and second column annotation denotes corresponding differential expression analysis. (E) Venn diagram showing commonly dysregulated pathways in patients transcriptomics and cell line proteomics. (F) Schematic diagram of the glycolysis and glutaminolysis and targeted drugs. (G) Metabolic control of viral replication in vitro. Fold change of the CCHFV L-gene following infection and treatment of 2-DG and DON at indicated concentrations compared to untreated in SW13 cells and Huh7 cells. A two-tailed paired Student t-test was performed, and p values are mentioned.

Figure 4—figure supplement 1
Quantitative proteomics of the Huh7 with 4 MOI infection 24hpi and comparisons with the 1 MOI infection indicated 2452 proteins were common that were significantly dysregulated.

Protein set enrichment analysis identified 33 pathways that were dysregulated where the top pathways remain unchanged.

Figure 5 with 1 supplement
Temporal dynamics of interferon stimulating genes (ISGs).

(A) Heatmap of Z-score transformed expression values of proteins belonging to the cellular response to IFN signaling pathways in Mock-infected and CCHFV-infected Huh7 cells at 24hpi and 48hpi as identified in proteomics. The log-2-fold change in the genes corresponding to the indicated proteins identified in our patient transcriptomics data (recovered vs acute) is shown under the column name RNASeq. (B and C) Volcano plot of ISGs visualizing the expression status of Mock-infected and CCHFV-Infected samples at (B) 24hpi and (C) 48hpi. The size and color gradients of the dots correspond to the adjusted P values of differential expression analysis and the log2 fold change, respectively. (D) Representative western blots illustrate the indicated ISGs in Mock-infected, CCHFV-infected, and UV-inactivated CCHFV-infected Huh7 cells at 48hpi. ISG20 antibody gave a specific band at approx. 40 kDa without any non-specific band in the membrane that was cut at 50 kDa in the top. (E) The densitometric intensity of the bands was quantified using Fiji (ImageJ) software. The intensity of the individual bands was first normalized to the respective β-actin loading control and further relative normalization with respect to the mock-infected control was done. The bars are represented as means ± SD of three independent experiments. A two-tailed paired Student t-test was performed, and p values are represented as *p < 0.05, **p < 0.01 and ***p < 0.001.

Figure 5—figure supplement 1
Western blot Images of ISGs (RIG-I, IFIT1, Mx1, Mx2, ISG20, ISG15), CCHFV-N protein and β-actin at 48hpi from three experimental replicates.
Author response image 1

Tables

Table 1
The CCHF patient characteristics.
PIDAgeGenderThe date of symptoms onsetThe date of hospitalizationTime to hospitalization (days)The date of the first samplingThe date of the second samplingSGS scoreSeverity group**Rt-pcrCT-valuesAnti-CCHFV IgMOutcome
P0133Female30 May 201703 June 2017403 June 201705 July 201851Positive31,85NDSurvived
P0218Male06 June 201712 June 2017612 June 2017ND72Positive25,89positiveSurvived
P0345Male12 June 201713 June 2017114 June 201701 July 201801Positive21,87NDSurvived
P0467Male13 June 201716 June 2017317 June 201705 July 201882Positive22,38NDSurvived
P0548Male12 June 201718 June 2017619 June 201708 July 201872Positive29,79NDSurvived
P0668Male13 June 201719 June 2017620 June 201705 July 201851Positive28,41NDSurvived
P0777Male19 June 201722 June 2017323 June 201705 July 201862Positive24,77NDSurvived
P0829Female20 June 201724 June 2017425 June 201702 July 201862Positive26,91NDSurvived
P0950Female20 June 201725 June 2017526 June 201706 July 201841Positive26,36PositiveSurvived
P1035Female07 July 201712 July 2017512 July 201704 July 201831negativeNAPositiveSurvived
P1164Female15 July 201718 July 2017319 July 2017ND102Positive22,46NDSurvived
P1257Male16 July 201721 July 2017522 July 201709 July 201892Positive20,81NDSurvived
P1379Male22 July 201724 July 2017224 July 2017ND113Positive22NDDied
P1436Male01 August 201706 August 2017507 August 201704 July 201872Positive24,66NDSurvived
P1562Male15 August 201720 August 2017521 August 201706 July 201892Positive19,86NDSurvived
P1648Male05 September 201707 September 2017207 September 2017ND41Positive22,09NDSurvived
P1755Male12 April 201817 April 2018518 April 2018ND92Positive26,16NDSurvived
P1844Female23 April 201827 April 2018429 April 2018ND92Positive21,27NDSurvived
  1. ND: not determined; NA: not applicable; SGS: severity grading system; RT-PCR: real-time - polymerase chain reaction; CT: cycle threshold; CCHFV: Crimean-Congo hemorrhagic fever virus.

  2. *

    1: Low (0–5); 2: Intermediate (6-10); 3: High (11-16).

Table 1—source data 1

Severity grade scoring during hospitalization.

The symptoms onset and sampling time are marked.

https://cdn.elifesciences.org/articles/76071/elife-76071-table1-data1-v1.xlsx

Additional files

Supplementary file 1

The DGE profile for the acute phase compared to the recovered phase in all patients.

https://cdn.elifesciences.org/articles/76071/elife-76071-supp1-v1.xlsx
Supplementary file 2

Pathways significantly regulated by genes expressed at the acute infection phase compared to the recovered phase identified in PIANO.

https://cdn.elifesciences.org/articles/76071/elife-76071-supp2-v1.xlsx
Supplementary file 3

Pathways significantly regulated by proteins in mock and CCHFV-treated Huh7 cells following 24hpi and 48hpi and time-series analysis identified in PIANO.

https://cdn.elifesciences.org/articles/76071/elife-76071-supp3-v1.xlsx
Transparent reporting form
https://cdn.elifesciences.org/articles/76071/elife-76071-transrepform1-v1.docx
Source data 1

Raw western blot images.

https://cdn.elifesciences.org/articles/76071/elife-76071-data1-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ujjwal Neogi
  2. Nazif Elaldi
  3. Sofia Appelberg
  4. Anoop Ambikan
  5. Emma Kennedy
  6. Stuart Dowall
  7. Binnur K Bagci
  8. Soham Gupta
  9. Jimmy E Rodriguez
  10. Sara Svensson-Akusjärvi
  11. Vanessa Monteil
  12. Akos Vegvari
  13. Rui Benfeitas
  14. Akhil Banerjea
  15. Friedemann Weber
  16. Roger Hewson
  17. Ali Mirazimi
(2022)
Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target
eLife 11:e76071.
https://doi.org/10.7554/eLife.76071