HLJ1 amplifies endotoxin-induced sepsis severity by promoting IL-12 heterodimerization in macrophages

Abstract

Heat shock protein (HSP) 40 has emerged as a key factor in both innate and adaptive immunity, whereas the role of HLJ1, a molecular chaperone in HSP40 family, in modulating endotoxin-induced sepsis severity is still unclear. During LPS-induced endotoxic shock, HLJ1 knockout mice shows reduced organ injury and IFN-γ-dependent mortality. Using single-cell RNA sequencing, we characterize mouse liver nonparenchymal cell populations under LPS stimulation, and show that HLJ1 deletion affected IFN-γ-related gene signatures in distinct immune cell clusters. In CLP models, HLJ1 deletion reduces IFN-γ expression and sepsis mortality rate when mice are treated with antibiotics. HLJ1 deficiency also leads to reduced serum levels of IL-12 in LPS-treated mice, contributing to dampened production of IFN-γ in natural killer cells but not CD4+ or CD8+ T cells, and subsequently to improved survival rate. Adoptive transfer of HLJ1-deleted macrophages into LPS-treated mice results in reduced IL-12 and IFN-γ levels and protects the mice from IFN-γ-dependent mortality. In the context of molecular mechanisms, HLJ1 is an LPS-inducible protein in macrophages and converts misfolded IL-12p35 homodimers to monomers, which maintains bioactive IL-12p70 heterodimerization and secretion. This study suggests HLJ1 causes IFN-γ-dependent septic lethality by promoting IL-12 heterodimerization, and targeting HLJ1 has therapeutic potential in inflammatory diseases involving activated IL-12/IFN-γ axis.

Data availability

The raw and processed 10x single-cell sequencing data generated in this study have been deposited in the NCBI GEO database under accession code GSE182137. Source data files have been provided for figures and figure supplements.

The following data sets were generated

Article and author information

Author details

  1. Wei-Jia Luo

    Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  2. Sung-Liang Yu

    Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Chia-Ching Chang

    Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Min-Hui Chien

    Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  5. Ya-Ling Chang

    Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  6. Keng-Mao Liao

    Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  7. Pei-Chun Lin

    Department of Laboratory Medicine, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  8. Kuei-Pin Chung

    Department of Laboratory Medicine, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  9. Ya-Hui Chuang

    Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  10. Jeremy JW Chen

    Department of Internal Medicine, National Taiwan University Hospital, Taichung, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  11. Pan-Chyr Yang

    Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  12. Kang-Yi Su

    Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
    For correspondence
    suky@ntu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6538-9526

Funding

Ministry of Science and Technology, Taiwan (MOST110-2314-B-002-269)

  • Kang-Yi Su

Ministry of Science and Technology, Taiwan (MOST105-2628-B-002-051-MY3)

  • Kang-Yi Su

Ministry of Science and Technology, Taiwan (MOST111-2628-B-002-029-MY3)

  • Kang-Yi Su

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures performed were approved by the Institutional Animal Care and Use Committee (IACUC) with IACUC number 20120515, 20201050 and 20220115 at National Taiwan University Medical College.

Copyright

© 2022, Luo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,514
    views
  • 706
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei-Jia Luo
  2. Sung-Liang Yu
  3. Chia-Ching Chang
  4. Min-Hui Chien
  5. Ya-Ling Chang
  6. Keng-Mao Liao
  7. Pei-Chun Lin
  8. Kuei-Pin Chung
  9. Ya-Hui Chuang
  10. Jeremy JW Chen
  11. Pan-Chyr Yang
  12. Kang-Yi Su
(2022)
HLJ1 amplifies endotoxin-induced sepsis severity by promoting IL-12 heterodimerization in macrophages
eLife 11:e76094.
https://doi.org/10.7554/eLife.76094

Share this article

https://doi.org/10.7554/eLife.76094

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Artem K Velichko, Nadezhda V Petrova ... Omar L Kantidze
    Research Article

    We investigated the role of the nucleolar protein Treacle in organizing and regulating the nucleolus in human cells. Our results support Treacle’s ability to form liquid-like phase condensates through electrostatic interactions among molecules. The formation of these biomolecular condensates is crucial for segregating nucleolar fibrillar centers from the dense fibrillar component and ensuring high levels of ribosomal RNA (rRNA) gene transcription and accurate rRNA processing. Both the central and C-terminal domains of Treacle are required to form liquid-like condensates. The initiation of phase separation is attributed to the C-terminal domain. The central domain is characterized by repeated stretches of alternatively charged amino acid residues and is vital for condensate stability. Overexpression of mutant forms of Treacle that cannot form liquid-like phase condensates compromises the assembly of fibrillar centers, suppressing rRNA gene transcription and disrupting rRNA processing. These mutant forms also fail to recruit DNA topoisomerase II binding protein 1 (TOPBP1), suppressing the DNA damage response in the nucleolus.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article Updated

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of preciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures preciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the preciliary vesicle recruitment, but not for other steps of cilium formation (Kanie et al., 2025). The lack of a membrane-binding motif in CEP89 suggests that it may indirectly recruit preciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and the centriole-associated vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similar to CEP89 knockouts, preciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the preciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the preciliary vesicles.