Evolution and regulation of microbial secondary metabolism

  1. Guillem Santamaria
  2. Chen Liao
  3. Chloe Lindberg
  4. Yanyan Chen
  5. Zhe Wang
  6. Kyu Rhee
  7. Francisco Rodrigues Pinto
  8. Jinyuan Yan  Is a corresponding author
  9. Joao B Xavier  Is a corresponding author
  1. University of Lisboa, Portugal
  2. Memorial Sloan Kettering Cancer Center, United States
  3. Weill Cornell Medical College, United States
  4. Memorial Sloan-Kettering Cancer Center, United States

Abstract

Microbes have disproportionate impacts on the macroscopic world. This is in part due to their ability to grow to large populations that collectively secrete massive amounts of secondary metabolites and alter their environment. Yet, the conditions favoring secondary metabolism despite the potential costs for primary metabolism remain unclear. Here we investigated the biosurfactants that the bacterium Pseudomonas aeruginosa makes and secretes to decrease the surface tension of surrounding liquid. Using a combination of genomics, metabolomics, transcriptomics, and mathematical modeling we show that the ability to make surfactants from glycerol varies inconsistently across the phylogenetic tree; instead, lineages that lost this ability are also worse at reducing the oxidative stress of primary metabolism on glycerol. Experiments with different carbon sources support a link with oxidative stress that explains the inconsistent distribution across the P. aeruginosa phylogeny and suggests a general principle: P. aeruginosa lineages produce surfactants if they can reduce the oxidative stress produced by primary metabolism and have excess resources, beyond their primary needs, to afford secondary metabolism. These results add a new layer to the regulation of a secondary metabolite unessential for primary metabolism but important to change physical properties of the environments surrounding bacterial populations.

Data availability

Sequencing data have been deposited in SRA, in the bioproject accession number PRJNA253624. Each individual sample has a file accession number listed in supporting table 7 provided. The additional dataset is provided through Dryad.

The following data sets were generated

Article and author information

Author details

  1. Guillem Santamaria

    3BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Chen Liao

    Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8474-1196
  3. Chloe Lindberg

    Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yanyan Chen

    Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhe Wang

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kyu Rhee

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Francisco Rodrigues Pinto

    3BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4217-0054
  8. Jinyuan Yan

    Computational & Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, United States
    For correspondence
    yanj2@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2046-5625
  9. Joao B Xavier

    Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    xavierj@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3592-1689

Funding

National Institutes of Health (U01 AI124275)

  • Joao B Xavier

National Institutes of Health (R01 AI137269)

  • Joao B Xavier

FCT/Portugal (UIDB/04046/2020)

  • Francisco Rodrigues Pinto

FCT/Portugal (UIDP/04046/2020)

  • Francisco Rodrigues Pinto

European Research Council (734790)

  • Francisco Rodrigues Pinto

FCT/Portugal (SFRH/BD/142899/2018)

  • Guillem Santamaria

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Santamaria et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,426
    views
  • 392
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guillem Santamaria
  2. Chen Liao
  3. Chloe Lindberg
  4. Yanyan Chen
  5. Zhe Wang
  6. Kyu Rhee
  7. Francisco Rodrigues Pinto
  8. Jinyuan Yan
  9. Joao B Xavier
(2022)
Evolution and regulation of microbial secondary metabolism
eLife 11:e76119.
https://doi.org/10.7554/eLife.76119

Share this article

https://doi.org/10.7554/eLife.76119

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article Updated

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.