Distinct impact of IgG subclass on autoantibody pathogenicity in different IgG4-mediated diseases

  1. Yanxia Bi
  2. Jian Su
  3. Shengru Zhou
  4. Yingjie Zhao
  5. Yan Zhang
  6. Huihui Zhang
  7. Mingdong Liu
  8. Aiwu Zhou
  9. Jianrong Xu
  10. Meng Pan  Is a corresponding author
  11. Yiming Zhao  Is a corresponding author
  12. Fubin Li  Is a corresponding author
  1. Shanghai Jiao Tong University, China
  2. First Affiliated Hospital of Soochow University, China

Abstract

IgG4 is the least potent human IgG subclass for the FcγR-mediated antibody effector function. Paradoxically, IgG4 is also the dominant IgG subclass of pathogenic autoantibodies in IgG4-mediated diseases. Here we show that the IgG subclass and Fc-FcγR interaction have a distinct impact on the pathogenic function of autoantibodies in different IgG4-mediated diseases in mouse models. While IgG4 and its weak Fc-FcγR interaction have an ameliorative role in the pathogenicity of anti-ADAMTS13 autoantibodies isolated from thrombotic thrombocytopenic purpura (TTP) patients, they have an unexpected exacerbating effect on anti-Dsg1 autoantibody pathogenicity in pemphigus foliaceus (PF) models. Strikingly, a non-pathogenic anti-Dsg1 antibody variant optimized for FcγR-mediated effector function can attenuate the skin lesions induced by pathogenic anti-Dsg1 antibodies by promoting the clearance of dead keratinocytes. These studies suggest that IgG effector function contributes to the clearance of autoantibody-Ag complexes, which is harmful in TTP, but beneficial in PF and may provide new therapeutic opportunity.

Data availability

All data and materials generated or analyzed during this study are either included in this manuscript (Figures and supplementary information) or available upon reasonable request.

Article and author information

Author details

  1. Yanxia Bi

    Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    Yanxia Bi, A patent application based on the study has been submitted (Chinese patent application number: 202011408005.X), and Fubin Li, Yanxia Bi, Yan Zhang, and Huihui Zhang are listed as inventors..
  2. Jian Su

    Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
    Competing interests
    No competing interests declared.
  3. Shengru Zhou

    Department of Dermatology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    No competing interests declared.
  4. Yingjie Zhao

    Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    No competing interests declared.
  5. Yan Zhang

    Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    Yan Zhang, A patent application based on the study has been submitted (Chinese patent application number: 202011408005.X), and Fubin Li, Yanxia Bi, Yan Zhang, and Huihui Zhang are listed as inventors..
  6. Huihui Zhang

    Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    Huihui Zhang, A patent application based on the study has been submitted (Chinese patent application number: 202011408005.X), and Fubin Li, Yanxia Bi, Yan Zhang, and Huihui Zhang are listed as inventors..
  7. Mingdong Liu

    Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    No competing interests declared.
  8. Aiwu Zhou

    Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    No competing interests declared.
  9. Jianrong Xu

    Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    No competing interests declared.
  10. Meng Pan

    Department of Dermatology, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    pm10633@rjh.com.cn
    Competing interests
    No competing interests declared.
  11. Yiming Zhao

    Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
    For correspondence
    zhaoyimingbox@163.com
    Competing interests
    No competing interests declared.
  12. Fubin Li

    Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    fubin.li@sjtu.edu.cn
    Competing interests
    Fubin Li, A patent application based on the study has been submitted (Chinese patent application number: 202011408005.X), and Fubin Li, Yanxia Bi, Yan Zhang, and Huihui Zhang are listed as inventors..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6268-3378

Funding

National Natural Science Foundation of China (31422020)

  • Fubin Li

National Natural Science Foundation of China (31870924)

  • Fubin Li

National Natural Science Foundation of China (81873431)

  • Yiming Zhao

Jiangsu Provincial Natural Science Foundation (BK20181164.)

  • Yiming Zhao

Shanghai Sailing Program (16YF1409700)

  • Yan Zhang

Shanghai Municipal Natural Science Foundation project (15ZR1436400)

  • Huihui Zhang

Shanghai Young Oriental scholar program 2015

  • Huihui Zhang

Innovative research team of high-level local universities in Shanghai (SSMU-2DCX20180100)

  • Yan Zhang
  • Huihui Zhang
  • Fubin Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were bred and maintained under specific pathogen-free (SPF) conditions, and all animal experiments were performed under the institutional guidelines of the Shanghai Jiao Tong University School of Medicine Institutional Animal Care and Use Committee (Protocol Registry Number: A-2015-014).

Human subjects: Ethical approval was obtained from the Ethics Committees in The Rui Jin Hospital of Shanghai Jiao Tong University School of Medicine and The First Affiliated Hospital of Soochow University, respectively. All PF and TTP patients and healthy volunteers signed informed consent.

Copyright

© 2022, Bi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,357
    views
  • 287
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yanxia Bi
  2. Jian Su
  3. Shengru Zhou
  4. Yingjie Zhao
  5. Yan Zhang
  6. Huihui Zhang
  7. Mingdong Liu
  8. Aiwu Zhou
  9. Jianrong Xu
  10. Meng Pan
  11. Yiming Zhao
  12. Fubin Li
(2022)
Distinct impact of IgG subclass on autoantibody pathogenicity in different IgG4-mediated diseases
eLife 11:e76223.
https://doi.org/10.7554/eLife.76223

Share this article

https://doi.org/10.7554/eLife.76223

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Yuedan Wang, Ying Li ... Xuan Xiao
    Research Article

    Acute retinal ischemia and ischemia-reperfusion injury are the primary causes of retinal neural cell death and vision loss in retinal artery occlusion (RAO). The absence of an accurate mouse model for simulating the retinal ischemic process has hindered progress in developing neuroprotective agents for RAO. We developed a unilateral pterygopalatine ophthalmic artery occlusion (UPOAO) mouse model using silicone wire embolization combined with carotid artery ligation. The survival of retinal ganglion cells and visual function were evaluated to determine the duration of ischemia. Immunofluorescence staining, optical coherence tomography, and haematoxylin and eosin staining were utilized to assess changes in major neural cell classes and retinal structure degeneration at two reperfusion durations. Transcriptomics was employed to investigate alterations in the pathological process of UPOAO following ischemia and reperfusion, highlighting transcriptomic differences between UPOAO and other retinal ischemia-reperfusion models. The UPOAO model successfully replicated the acute interruption of retinal blood supply observed in RAO. 60 min of Ischemia led to significant loss of major retinal neural cells and visual function impairment. Notable thinning of the inner retinal layer, especially the ganglion cell layer, was evident post-UPOAO. Temporal transcriptome analysis revealed various pathophysiological processes related to immune cell migration, oxidative stress, and immune inflammation during the non-reperfusion and reperfusion periods. A pronounced increase in microglia within the retina and peripheral leukocytes accessing the retina was observed during reperfusion periods. Comparison of differentially expressed genes (DEGs) between the UPOAO and high intraocular pressure models revealed specific enrichments in lipid and steroid metabolism-related genes in the UPOAO model. The UPOAO model emerges as a novel tool for screening pathogenic genes and promoting further therapeutic research in RAO.

    1. Immunology and Inflammation
    Hyun-Chae Lee, Sun-Hee Park ... Kyoung Seob Song
    Research Article

    The gram-negative bacterium lipopolysaccharide (LPS) is frequently administered to generate models of systemic inflammation. However, there are several side effects and no effective treatment for LPS-induced systemic inflammation. PEGylated PDZ peptide based on zonula occludens-1 (ZO-1) was analyzed for its effects on systemic inflammation induced by LPS. PDZ peptide administration led to the restoration of tissue injuries (kidney, liver, and lung) and prevented alterations in biochemical plasma markers. The production of pro-inflammatory cytokines was significantly decreased in the plasma and lung BALF in the PDZ-administered mice. Flow cytometry analysis revealed the PDZ peptide significantly inhibited inflammation, mainly by decreasing the population of M1 macrophages, and neutrophils (immature and mature), and increasing M2 macrophages. Using RNA sequencing analysis, the expression levels of the NF-κB-related proteins were lower in PDZ-treated cells than in LPS-treated cells. In addition, wild-type PDZ peptide significantly increased mitochondrial membrane integrity and decreased LPS-induced mitochondria fission. Interestingly, PDZ peptide dramatically could reduce LPS-induced NF-κB signaling, ROS production, and the expression of M1 macrophage marker proteins, but increased the expression of M2 macrophage marker proteins. These results indicated that PEGylated PDZ peptide inhibits LPS-induced systemic inflammation, reducing tissue injuries and reestablishing homeostasis, and may be a therapeutic candidate against systemic inflammation.