Brain-wide analysis of the supraspinal connectome reveals anatomical correlates to functional recovery after spinal injury

  1. Zimei Wang
  2. Adam Romanski
  3. Vatsal Mehra
  4. Yunfang Wang
  5. Matthew Brannigan
  6. Benjamin C Campbell
  7. Gregory A Petsko
  8. Pantelis Tsoulfas  Is a corresponding author
  9. Murray G Blackmore  Is a corresponding author
  1. Marquette University, United States
  2. University of Miami, United States
  3. Cornell University, United States

Abstract

The supraspinal connectome is essential for normal behavior and homeostasis and consists of numerous sensory, motor, and autonomic projections from brain to spinal cord. Study of supraspinal control and its restoration after damage has focused mostly on a handful of major populations that carry motor commands, with only limited consideration of dozens more that provide autonomic or crucial motor modulation. Here we assemble an experimental workflow to rapidly profile the entire supraspinal mesoconnectome in adult mice and disseminate the output in a web-based resource. Optimized viral labeling, 3D imaging, and registration to a mouse digital neuroanatomical atlas assigned tens of thousands of supraspinal neurons to 69 identified regions. We demonstrate the ability of this approach to clarify essential points of topographic mapping between spinal levels, to measure population-specific sensitivity to spinal injury, and to test relationships between region-specific neuronal sparing and variability in functional recovery. This work will spur progress by broadening understanding of essential but understudied supraspinal populations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file or on the associated website 3Dmousebrain.com. Source Data 1 contains complete numerical data from all animals and Source Data 2 contains the numerical data used to generate all figures .

Article and author information

Author details

  1. Zimei Wang

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam Romanski

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vatsal Mehra

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yunfang Wang

    Department of Neurological Surgery, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew Brannigan

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benjamin C Campbell

    Helen and Robert Appel Alzheimer's Disease Research Institute, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8041-5561
  7. Gregory A Petsko

    Helen and Robert Appel Alzheimer's Disease Research Institute, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3668-3694
  8. Pantelis Tsoulfas

    Department of Neurological Surgery, University of Miami, Miami, United States
    For correspondence
    ptsoulfa@Med.miami.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Murray G Blackmore

    Department of Biomedical Sciences, Marquette University, Milwaukee, United States
    For correspondence
    murray.blackmore@marquette.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9345-6688

Funding

National Institutes of Health (R01NS083983)

  • Murray G Blackmore

The Bryon Riesch Paralysis Foundation

  • Murray G Blackmore

The Miami Project to Cure Paralysis

  • Pantelis Tsoulfas

The Buoniconti fund

  • Pantelis Tsoulfas

State of Florida Red Light Camera Fund

  • Pantelis Tsoulfas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4013) of Marquette University. All surgery was performed under ketamine / xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,228
    views
  • 467
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.76254

Further reading

    1. Neuroscience
    Scott Isherwood, Sarah A Kemp ... Birte Forstmann
    Research Article

    This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites. This meta-analysis, along with other recent aggregatory fMRI studies, does not find evidence for the innervation of the hyperdirect or indirect cortico-basal-ganglia pathways in successful response inhibition. What we do find, is large subcortical activity profiles for failed stop trials. We discuss possible explanations for the mismatch of findings between the fMRI results presented here and results from other research modalities that have implicated nodes of the basal ganglia in successful inhibition. We also highlight the substantial effect smoothing can have on the conclusions drawn from task-specific general linear models. First and foremost, this study presents a proof of concept for meta-analytical methods that enable the merging of extensive, unprocessed, or unreduced datasets. It demonstrates the significant potential that open-access data sharing can offer to the research community. With an increasing number of datasets being shared publicly, researchers will have the ability to conduct meta-analyses on more than just summary data.

    1. Neuroscience
    Xing Xiao, Gagik Yeghiazaryan ... Anne Christine Hausen
    Short Report

    Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R). To analyze the functional role of Ox1R signaling in dopaminergic neurons, we deleted Ox1R specifically in dopamine transporter-expressing neurons of mice and investigated the functional consequences. Deletion of Ox1R increased locomotor activity and exploration during exposure to novel environments or when intracerebroventricularely injected with orexin A. Spontaneous activity in home cages, anxiety, reward processing, and energy metabolism did not change. Positron emission tomography imaging revealed that Ox1R signaling in dopaminergic neurons affected distinct neural circuits depending on the stimulation mode. In line with an increase of neural activity in the lateral paragigantocellular nucleus (LPGi) of Ox1RΔDAT mice, we found that dopaminergic projections innervate the LPGi in regions where the inhibitory dopamine receptor subtype D2 but not the excitatory D1 subtype resides. These data suggest a crucial regulatory role of Ox1R signaling in dopaminergic neurons in novelty-induced locomotion and exploration.