Local activation of focal adhesion kinase orchestrates the positioning of presynaptic scaffold proteins and Ca2+ signalling to control glucose dependent insulin secretion

  1. Dillon Jevon
  2. Kylie Deng
  3. Nicole Hallahan
  4. Krish Kumar
  5. Jason Tong
  6. Wan Jun Gan
  7. Clara Tran
  8. Marcela M Bilek
  9. Peter Thorn  Is a corresponding author
  1. University of Sydney, Australia
  2. National University of Singapore, Singapore

Abstract

A developing understanding suggests that spatial compartmentalisation in pancreatic β cells is critical in controlling insulin secretion. To investigate the mechanisms, we have developed live-cell sub-cellular imaging methods using the mouse organotypic pancreatic slice. We demonstrate that the organotypic pancreatic slice, when compared with isolated islets, preserves intact β cell structure, and enhances glucose dependent Ca2+ responses and insulin secretion. Using the slice technique, we have discovered the essential role of local activation of integrins and the downstream component, focal adhesion kinase, in regulating β cells. Integrins and focal adhesion kinase are exclusively activated at the β cell capillary interface and using in situ and in vitro models we show their activation both positions presynaptic scaffold proteins, like ELKS and liprin, and regulates glucose dependent Ca2+ responses and insulin secretion. We conclude that focal adhesion kinase orchestrates the final steps of glucose dependent insulin secretion within the restricted domain where β cells contact the islet capillaries.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dillon Jevon

    School of Medical Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Kylie Deng

    School of Medical Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9096-2574
  3. Nicole Hallahan

    School of Medical Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Krish Kumar

    School of Medical Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Jason Tong

    School of Medical Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1027-3662
  6. Wan Jun Gan

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Clara Tran

    School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Marcela M Bilek

    School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter Thorn

    School of Medical Sciences, University of Sydney, Sydney, Australia
    For correspondence
    p.thorn@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3228-770X

Funding

National Health and Medical Research Council (APP1128273)

  • Peter Thorn

Sydney Medical School (SREI)

  • Marcela M Bilek
  • Peter Thorn

Diabetes Australia Research Trust

  • Peter Thorn

Australian Research Council (FL190100216)

  • Marcela M Bilek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was conducted in strict accordance with local animal ethics procedures as approved by the University of Sydney Ethics Committee (2Project number: 019/1642)

Copyright

© 2022, Jevon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,011
    views
  • 315
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dillon Jevon
  2. Kylie Deng
  3. Nicole Hallahan
  4. Krish Kumar
  5. Jason Tong
  6. Wan Jun Gan
  7. Clara Tran
  8. Marcela M Bilek
  9. Peter Thorn
(2022)
Local activation of focal adhesion kinase orchestrates the positioning of presynaptic scaffold proteins and Ca2+ signalling to control glucose dependent insulin secretion
eLife 11:e76262.
https://doi.org/10.7554/eLife.76262

Share this article

https://doi.org/10.7554/eLife.76262

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.