Functional visualization of NK Cell-mediated killing of metastatic single tumor cells

  1. Hiroshi Ichise
  2. Shoko Tsukamoto
  3. Tsuyoshi Hirashima
  4. Yoshinobu Konishi
  5. Choji Oki
  6. Shinya Tsukiji
  7. Satoshi Iwano
  8. Atsushi Miyawaki
  9. Kenta Sumiyama
  10. Kenta Terai
  11. Michiyuki Matsuda  Is a corresponding author
  1. Kyoto University, Japan
  2. Nagoya Institute of Technology, Japan
  3. RIKEN, Japan
  4. RIKEN Center for Biosystems Dynamics Research, Japan

Abstract

Natural killer (NK) cells lyse invading tumor cells to limit metastatic growth in the lung, but how some cancers evade this host protective mechanism to establish a growing lesion is unknown. Here we have combined ultra-sensitive bioluminescence imaging with intravital two-photon microscopy involving genetically-encoded biosensors to examine this question. NK cells eliminated disseminated tumor cells from the lung within 24 hrs of arrival, but not thereafter. Intravital dynamic imaging revealed that 50% of NK-tumor cell encounters lead to tumor cell death in the first 4 hrs after tumor cell arrival, but after 24 hrs of arrival, nearly 100% of the interactions result in the survival of the tumor cell. During this 24 hrs period, the probability of ERK activation in NK cells upon encountering the tumor cells was decreased from 68% to 8%, which correlated with the loss of the activating ligand CD155/PVR/Necl5 from the tumor cell surface. Thus, by quantitatively visualizing the NK-tumor cell interaction at the early stage of metastasis, we have revealed the crucial parameters of NK cell immune surveillance in the lung.

Data availability

Imaging data are deposited at SSBD: database (https://doi.org/10.24631/ssbd.repos.2021.08.001).

Article and author information

Author details

  1. Hiroshi Ichise

    Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5187-810X
  2. Shoko Tsukamoto

    Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Tsuyoshi Hirashima

    Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7323-9627
  4. Yoshinobu Konishi

    Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1212-7212
  5. Choji Oki

    Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shinya Tsukiji

    Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1402-5773
  7. Satoshi Iwano

    Brain Science Institute, Center for Brain Science, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Atsushi Miyawaki

    Brain Science Institute, Center for Brain Science,, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Kenta Sumiyama

    Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8785-5439
  10. Kenta Terai

    Department of Pathology and Biology of Diseasesv Graduate School of Medicine, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7638-3720
  11. Michiyuki Matsuda

    Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
    For correspondence
    matsuda.michiyuki.2c@kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5876-9969

Funding

Japan Society for the Promotion of Science (18K15317)

  • Hiroshi Ichise

Japan Society for the Promotion of Science (15H05949)

  • Michiyuki Matsuda

Japan Society for the Promotion of Science (19H00993)

  • Michiyuki Matsuda

Japan Agency for Medical Research and Development (19gm5010003h0003)

  • Michiyuki Matsuda

Fugaku Trust for Medicinal Research

  • Michiyuki Matsuda

Core Research for Evolutional Science and Technology (JPMJCR1654)

  • Michiyuki Matsuda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal protocols were reviewed and approved by the Animal Care and Use Committee of Kyoto University Graduate School of Medicine (approval no. 19090)

Copyright

© 2022, Ichise et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,616
    views
  • 980
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroshi Ichise
  2. Shoko Tsukamoto
  3. Tsuyoshi Hirashima
  4. Yoshinobu Konishi
  5. Choji Oki
  6. Shinya Tsukiji
  7. Satoshi Iwano
  8. Atsushi Miyawaki
  9. Kenta Sumiyama
  10. Kenta Terai
  11. Michiyuki Matsuda
(2022)
Functional visualization of NK Cell-mediated killing of metastatic single tumor cells
eLife 11:e76269.
https://doi.org/10.7554/eLife.76269

Share this article

https://doi.org/10.7554/eLife.76269

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.

    1. Cell Biology
    Nancy Nader, Lama Assaf ... Khaled Machaca
    Research Article

    The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.