Both prey and predator features predict the individual predation risk and survival of schooling prey
Abstract
Predation is one of the main evolutionary drivers of social grouping. While it is well appreciated that predation risk is likely not shared equally among individuals within groups, its detailed quantification has remained difficult due to the speed of attacks and the highly-dynamic nature of collective prey response. Here, using high-resolution tracking of solitary predators (Northern pike) hunting schooling fish (golden shiners), we not only provide insights into predator decision-making, but show which key spatial and kinematic features of predator and prey predict the risk of individuals to be targeted and to survive attacks. We found that pike tended to stealthily approach the largest groups, and were often already inside the school when launching their attack, making prey in this frontal 'strike zone' the most vulnerable to be targeted. From the prey's perspective, those fish in central locations, but relatively far from, and less aligned with, neighbours, were most likely to be targeted. While the majority of attacks were successful (70%), targeted individuals that did manage to avoid being captured exhibited a higher maximum acceleration response just before the attack and were further away from the pike's head. Our results highlight the crucial interplay between predators' attack strategy and response of prey underlying the predation risk within mobile animal groups.
Data availability
Associated datasets are available on Mendeley Data (doi: 10.17632/bszk9ztryp.1).
-
Data for: Both Prey and Predator Features Determine Predation Risk and Survival of Schooling PreyMendeley, doi:10.17632/bszk9ztryp.1.
Article and author information
Author details
Funding
Alexander von Humboldt-Stiftung
- Jolle Wolter Jolles
Ministerio de Ciencia e Innovación (CEX-2018-000828-S)
- Jolle Wolter Jolles
National Science Foundation (1701289)
- Matthew MG Sosna
Universität Konstanz
- Jolle Wolter Jolles
John S. and James L. Knight Foundation
- Joseph Bak-Coleman
Office of Naval Research Global (N00014-64019-1-2556)
- Iain D Couzin
HORIZON EUROPE Marie Sklodowska-Curie Actions (860949)
- Iain D Couzin
Deutsche Forschungsgemeinschaft (EXC 2117-422037984)
- Iain D Couzin
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the standards set forth by the ASAB/ABS Guidelines for the Treatment of Animals in Behavioural Research (2012) and the guidelines for predation experiments described by Huntingford (1984). Specifically, staged predation events, whereby live predators could interact freely with and consume their prey, were necessary to quantify normal predatory and anti-predator behaviour as well as individual fitness and thereby realise the novel objectives of our study, going beyond previous work using predator cues or models or with virtual prey. We thereby acquired highly detailed data of all attacks, something that would not have been possible in the wild and with the aim to get the maximum possible information from each trial (c.f. Huntingford, 1984). We were able to reduce the number of fish used in the experiments by conducting repeated exposures, combining biological (different groups) and technical (independent repeated measures) replicates. Although shiners may experience stress during the staged predation encounters, the testing conditions with a group size of 40 fish, which reflects the size of shiner shoals observed in the wild (Hall et al., 1979; Krause et al., 2000), and the large open tank, enable shiners to hide among others and escape attacks. All animal care and experimental procedures were approved by the institutional animal care and use committee (IACUC) protocols (#2068-16) of Princeton University.
Copyright
© 2022, Jolles et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,301
- views
-
- 530
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yields similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels – primary producers, primary consumers, and secondary consumers – in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity – gauged within three pivotal species – within each trophic level, evaluating seven key ecosystem functions, and analyzing the magnitude of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persist across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.
-
- Ecology
- Evolutionary Biology
While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.