A method for low-coverage single-gamete sequence analysis demonstrates adherence to Mendel's first law across a large sample of human sperm

  1. Sara A Carioscia
  2. Kathryn J Weaver
  3. Andrew N Bortvin
  4. Hao Pan
  5. Daniel Ariad
  6. Avery Davis Bell
  7. Rajiv C McCoy  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Georgia Institute of Technology, United States

Abstract

Recently published single-cell sequencing data from individual human sperm (n = 41,189; 969-3,377 cells from each of 25 donors) offer an opportunity to investigate questions of inheritance with improved statistical power, but require new methods tailored to these extremely low-coverage data (∼0.01 x per cell). To this end, we developed a method, named rhapsodi, that leverages sparse gamete genotype data to phase the diploid genomes of the donor individuals, impute missing gamete genotypes, and discover meiotic recombination breakpoints, benchmarking its performance across a wide range of study designs. Mendel's Law of Segregation states that the offspring of a diploid, heterozygous parent will inherit either allele with equal probability. While the vast majority of loci adhere to this rule, research in model and non-model organisms has uncovered numerous exceptions whereby 'selfish' alleles are disproportionately transmitted to the next generation. Evidence of such 'transmission distortion' (TD) in humans remains equivocal in part because scans of human pedigrees have been under-powered to detect small effects. After applying rhapsodi to the sperm sequencing data, we therefore scanned the gametes for evidence of TD. Our results exhibited close concordance with binomial expectations under balanced transmission. Together, our work demonstrates that rhapsodi can facilitate novel uses of inferred genotype data and meiotic recombination events, while offering a powerful quantitative framework for testing for TD in other cohorts and study systems.

Data availability

Data analysis scripts specific to our study are available at https://github.com/mccoy-lab/transmission-distortion. Our package rhapsodi is available at: https://github.com/mccoy-lab/rhapsodi.Raw sperm sequencing data from Bell et al. (2020) can be accessed via dbGaP (study accession number phs001887.v1.p1), as described in the original publication. Raw sperm sequencing data from Leung et al. (2021) was accessed upon request from the authors. We filtered the cells in our analysis using metadata published by Bell et al. (2020) at: https://zenodo.org/record/3561081#.YLAdO2ZKhb9. Analogous metadata from Leung et al. (2021) was obtained upon request from the authors.

The following previously published data sets were used

Article and author information

Author details

  1. Sara A Carioscia

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Kathryn J Weaver

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Andrew N Bortvin

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Hao Pan

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Daniel Ariad

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Avery Davis Bell

    School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    Avery Davis Bell, is an inventor on a US Patent Application (US20210230667A1, applicant: President and Fellows of Harvard College) relating to the Sperm-seq single-cell sequencing method. Was an occasional consultant for Ohana Biosciences between October 2019 and March 2020..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1837-302X
  7. Rajiv C McCoy

    Department of Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    rajiv.mccoy@jhu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0615-146X

Funding

National Science Foundation (1746891)

  • Sara A Carioscia

National Institutes of Health (R35GM133747)

  • Rajiv C McCoy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Carioscia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,455
    views
  • 208
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara A Carioscia
  2. Kathryn J Weaver
  3. Andrew N Bortvin
  4. Hao Pan
  5. Daniel Ariad
  6. Avery Davis Bell
  7. Rajiv C McCoy
(2022)
A method for low-coverage single-gamete sequence analysis demonstrates adherence to Mendel's first law across a large sample of human sperm
eLife 11:e76383.
https://doi.org/10.7554/eLife.76383

Share this article

https://doi.org/10.7554/eLife.76383

Further reading

    1. Genetics and Genomics
    Shuai Zhang, Ruixue Wang ... Lin Sun
    Research Article

    N6-methyladenosine (m6A) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of m6A components appears in a variety of human diseases. RNA m6A modification in Drosophila has proven to be involved in sex determination regulated by Sxl and may affect X chromosome expression through the MSL complex. The dosage-related effects under the condition of genomic imbalance (i.e. aneuploidy) are related to various epigenetic regulatory mechanisms. Here, we investigated the roles of RNA m6A modification in unbalanced genomes using aneuploid Drosophila. The results showed that the expression of m6A components changed significantly under genomic imbalance, and affected the abundance and genome-wide distribution of m6A, which may be related to the developmental abnormalities of aneuploids. The relationships between methylation status and classical dosage effect, dosage compensation, and inverse dosage effect were also studied. In addition, we demonstrated that RNA m6A methylation may affect dosage-dependent gene regulation through dosage-sensitive modifiers, alternative splicing, the MSL complex, and other processes. More interestingly, there seems to be a close relationship between MSL complex and RNA m6A modification. It is found that ectopically overexpressed MSL complex, especially the levels of H4K16Ac through MOF, could influence the expression levels of m6A modification and genomic imbalance may be involved in this interaction. We found that m6A could affect the levels of H4K16Ac through MOF, a component of the MSL complex, and that genomic imbalance may be involved in this interaction. Altogether, our work reveals the dynamic and regulatory role of RNA m6A modification in unbalanced genomes, and may shed new light on the mechanisms of aneuploidy-related developmental abnormalities and diseases.

    1. Genetics and Genomics
    Sedigheh Delmaghani, Aziz El-Amraoui
    Insight

    The DYRK1A enzyme is a pivotal contributor to frequent and severe episodes of otitis media in Down syndrome, positioning it as a promising target for therapeutic interventions.