trim-21 promotes proteasomal degradation of CED-1 for apoptotic cell clearance in C. elegans

  1. Lei Yuan
  2. Peiyao Li
  3. Huiru Jing
  4. Qian Zheng
  5. Hui Xiao  Is a corresponding author
  1. Shaanxi Normal University, China

Abstract

The phagocytic receptor CED-1 mediates apoptotic cell recognition by phagocytic cells, enabling cell corpse clearance in Caenorhabditis elegans. Whether appropriate levels of CED-1 are maintained for executing the engulfment function remains unknown. Here, we identified the C. elegans E3 ubiquitin ligase tripartite motif containing-21 (TRIM-21) as a component of the CED-1 pathway for apoptotic cell clearance. When the NPXY motif of CED-1 was bound to the adaptor protein CED-6 or the YXXL motif of CED-1 was phosphorylated by tyrosine kinase SRC-1 and subsequently bound to the adaptor protein NCK-1 containing the SH2 domain, TRIM-21 functioned in conjunction with UBC-21 to catalyze K48-linked poly-ubiquitination on CED-1, targeting it for proteasomal degradation. In the absence of TRIM-21, CED-1 accumulated post-translationally and drove cell corpse degradation defects, as evidenced by direct binding to VHA-10. These findings reveal a unique mechanism for the maintenance of appropriate levels of CED-1 to regulate apoptotic cell clearance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Lei Yuan

    College of Life Sciences, Shaanxi Normal University, Xi'An, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Peiyao Li

    College of Life Sciences, Shaanxi Normal University, Xi'An, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Huiru Jing

    College of Life Sciences, Shaanxi Normal University, Xi'An, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Qian Zheng

    College of Life Sciences, Shaanxi Normal University, Xi'An, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Hui Xiao

    College of Life Sciences, Shaanxi Normal University, Xi'An, China
    For correspondence
    xiaohui20022008@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9305-4486

Funding

National Natural Science Foundation of China (91954114)

  • Hui Xiao

National Natural Science Foundation of China (31871387)

  • Hui Xiao

the Innovative Research Team for the Central Universities (GK202001004)

  • Hui Xiao

Natural Science Foundation Youth Project of Shaanxi Province (2022JQ208)

  • Qian Zheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Yuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,107
    views
  • 349
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lei Yuan
  2. Peiyao Li
  3. Huiru Jing
  4. Qian Zheng
  5. Hui Xiao
(2022)
trim-21 promotes proteasomal degradation of CED-1 for apoptotic cell clearance in C. elegans
eLife 11:e76436.
https://doi.org/10.7554/eLife.76436

Share this article

https://doi.org/10.7554/eLife.76436

Further reading

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarová ... Marie Macůrková
    Research Article Updated

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2, together with the Frizzled receptor CFZ-2, positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.

    1. Cell Biology
    2. Neuroscience
    Sara Bitar, Timo Baumann ... Axel Methner
    Research Article

    Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. Familial cases of PD are often caused by mutations of PTEN-induced kinase 1 (PINK1) and the ubiquitin ligase Parkin, both pivotal in maintaining mitochondrial quality control. CISD1, a homodimeric mitochondrial iron-sulfur-binding protein, is a major target of Parkin-mediated ubiquitination. We here discovered a heightened propensity of CISD1 to form dimers in Pink1 mutant flies and in dopaminergic neurons from PINK1 mutation patients. The dimer consists of two monomers that are covalently linked by a disulfide bridge. In this conformation CISD1 cannot coordinate the iron-sulfur cofactor. Overexpressing Cisd, the Drosophila orthologue of CISD1, and a mutant Cisd incapable of binding the iron-sulfur cluster in Drosophila reduced climbing ability and lifespan. This was more pronounced with mutant Cisd and aggravated in Pink1 mutant flies. Complete loss of Cisd, in contrast, rescued all detrimental effects of Pink1 mutation on climbing ability, wing posture, dopamine levels, lifespan, and mitochondrial ultrastructure. Our results suggest that Cisd, probably iron-depleted Cisd, operates downstream of Pink1 shedding light on PD pathophysiology and implicating CISD1 as a potential therapeutic target.