These final datasets were obtained from respectively three and three normalized global datasets of experimental data obtained from the literature (dashed-contour grey-filled boxes) and . The …
(A) Bubble diagram representing the pairs of MN and/or mU properties that could be investigated in this study from the results provided by the 40 studies identified in our web search. MN and mU …
These were obtained from the 19 studies reporting cat data that measured and investigated the 17 pairs of motoneuron (MN) properties reported in Figure 2A. For each pair, the property is read …
All the cat datasets presented in Figure 3.
These were obtained from the 19 studies reporting cat data that concurrently measured at least two of the morphometric and electrophysiological properties listed in Table 1. For each pair, the …
For displaying purposes, the MN properties are plotted in arbitrary units as power functions (intercept ) of : according to Table 3. The larger the MN size, the larger , , and in the …
Here are reported for each dataset the average values across the five permutations of (A) the normalized maximum error (), (B) the normalized root mean square error (), and (C) coefficient of …
They were obtained from the five studies reporting data on rats and the four studies presenting data on mice reported in Appendix 1—table 5 that measured the , , and pairs of MN …
Datasets used in the rat plot.
Datasets used in the mouse plots.
Depending on the typical range over which each property spans, the distributions are divided in steps of 10 or 20%. The frequency distribution is provided in percentage of the total number of …
For each experimental study included in the global dataset , the range, mean, coefficient of variation , and the ratio of the experimental values measured in this study were computed. …
The histogram is divided between global datasets (half vertical lines), grouped as final size-dependent datasets (full vertical lines). For each global dataset, the total number of data points is …
is the size of the MN. As reproduced in Table 2, the MN size is adequately described by measures of the MN surface area and the soma diameter . and define the MN-specific electrical …
Properties | Notation | Unit | |
---|---|---|---|
MN properties | Size: Neuron surface area Soma diameter | ||
Resistance | |||
Specific resistance per unit area | |||
Capacitance | |||
Specific capacitance per unit area | |||
Time constant | |||
Rheobase (current recruitment threshold) | |||
Voltage threshold | |||
Afterhyperpolarization duration | |||
Axonal conduction velocity | |||
mU properties | Size: | ||
Total fibre cross-sectional area | |||
Mean fibre cross-sectional area | |||
Innervation ratio | |||
Tetanic force | |||
Twitch force |
and are conceptual parameters which are adequately described by the measurable and linearly inter-related quantities reported in this table.
MN size (SMN) | mU size (SmU) |
---|---|
For information, the , p-value, and the equation are reported for each fitted global dataset. The normalized MN-size dependent relationships are mathematically derived from the …
MN property | (normalized global datasets) | (final MN-size dependent datasets) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Relationship | p-value | Reference studies | p-value | points | |||||||
4.0 (2.5; 6.4) | 0.7 (0.6; 0.8) | 0.58 | < 10-5 | Cullheim, 1978; Kernell and Zwaagstra, 1981; Burke et al., 1982 | 4.0 (2.5; 6.4) | 0.7 (0.6; 0.8) | 0.58 | < 10-5 | 109 | ||
6.1 · 103 (1.2 · 103; 3.2 · 104) | −1.2 (−1.6; −0.8) | 0.34 | < 10-5 | Zwaagstra and Kernell, 1980 | 2.5 · 104 (1.2 · 104; 5.0 · 104) | −1.5 (−1.7; −1.3) | 0.41 | < 10-5 | 492 | ||
1.5 · 104 (7.4 · 103; 2.9 · 104) | −1.4 (−1.5; −1.2) | 0.41 | < 10-5 | Eccles et al., 1958a; Zwaagstra and Kernell, 1980; Gustafsson and Pinter, 1984b; Foehring et al., 1987 | |||||||
1.5 · 105 (2.7 · 104; 7.9 · 105) | −2.1 (−2.5; −1.7) | 0.61 | < 10-5 | Kernell and Zwaagstra, 1981; Burke et al., 1982 | 9.6 · 105 (4.1 · 105; 2.3 · 106) | −2.4 (−2.6; −2.2) | 0.37 | < 10-5 | 745 | ||
6.3 · 105 (1.9 · 105; 2.1 · 106) | −2.3 (−2.6; −2.0) | 0.38 | < 10-5 | Kernell, 1966; Burke, 1968; Barrett and Crill, 1974; Kernell and Zwaagstra, 1981; Fleshman et al., 1981; Gustafsson and Pinter, 1984b; Sasaki, 1991 | |||||||
6.2 · 10−1 (4.1 · 10−1; 9.2 · 10−1) | 1.1 (0.9; 1.2) | 0.65 | < 10-5 | Gustafsson, 1979; Gustafsson and Pinter, 1984b; Foehring et al., 1987; Pinter and Vanden Noven, 1989; Sasaki, 1991 | |||||||
1.1 · 103 (0.8 · 103; 1.3 · 103) | −1.0 (−1.1; −0.9) | 0.37 | < 10-5 | Kernell, 1966; Fleshman et al., 1981; Gustafsson and Pinter, 1984a; Zengel et al., 1985; Munson et al., 1986; Foehring et al., 1987; Krawitz et al., 2001 | 9.0 · 10−4 (4.7 · 10−4; 1.7 · 10−3) | 2.5 (2.4; 2.7) | 0.37 | < 10-5 | 722 | ||
3.2 · 10−6 (1.3 · 10−7; 8.2 · 10−5) | 3.7 (3.0; 4.4) | 0.37 | < 10-5 | Kernell and Monster, 1981; Gustafsson and Pinter, 1984a | |||||||
2.5 · 104 (1.3 · 104; 4.8· 104) | −1.7 (−1.9; −1.6) | 0.60 | < 10-5 | Gustafsson and Pinter, 1984a | |||||||
2.4 · 102 (2.0 · 102; 3.9 · 102) | −0.4 (−0.4; −0.3) | 0.57 | < 10-5 | Gustafsson and Pinter, 1984b | 1.2 (0.7; 2.0) | 1.0 (0.9; 1.2) | 0.28 | < 10-5 | 444 | ||
2.9 · 101 (2.4 · 101; 3.5 · 101) | 0.3 (0.2; 0.3) | 0.51 | < 10-5 | Gustafsson and Pinter, 1984a | |||||||
2.8 · 102 (1.8 · 102; 4.4 · 102) | −0.4 (−0.5; −0.3) | 0.24 | < 10-5 | Gustafsson and Pinter, 1984b | |||||||
2.5 (0.7; 8.4) | 0.8 (0.5; 1.0) | 0.17 | < 10-5 | Gustafsson and Pinter, 1984b | |||||||
8.7 (7.2; 10.6) | 0.5 (0.4; 0.6) | 0.52 | < 10-5 | Burke and ten Bruggencate, 1971; Barrett and Crill, 1974; Gustafsson, 1979; Gustafsson and Pinter, 1984b; Zengel et al., 1985; Pinter and Vanden Noven, 1989; Sasaki, 1991 | 2.6 · 104 (1.5 · 104; 4.5 · 104) | −1.5 (−1.6; −1.4) | 0.46 | < 10-5 | 649 | ||
2.2 (1.3; 3.5) | 0.8 (0.7; 1.0) | 0.63 | < 10-5 | Gustafsson and Pinter, 1984b | |||||||
2.3 · 102 (1.9 · 102; 2.7 · 102) | −0.4 (−0.5; −0.3) | 0.72 | < 10-5 | Gustafsson and Pinter, 1984a | |||||||
1.2 · 104 (2.2 · 103; 6.6 · 104) | −1.3 (−1.7; −0.9) | 0.30 | < 10-5 | Gustafsson and Pinter, 1984b |
Each column provides the relationships between one and the eight other MN properties. If one property is known, the complete MN profile can be reconstructed by using the pertinent line in this …
Species | (fitted relationships) | (final relationships) | ||||
---|---|---|---|---|---|---|
Relationship | p-value | Reference studies | c | |||
Rat | 3.4 | 0.45 | 6.10-3 | Kanda and Hashizume, 1992 | 2.4 | |
Cat | 9.4 | 0.43 | <10-5 | Knott et al., 1971 | 6.6 | |
7.2 | 0.37 | <10-5 | Mcphedran et al., 1965; Wuerker et al., 1965; Appelberg and Emonet-Dénand, 1967; Proske and Waite, 1974; Bagust, 1974; Jami and Petit, 1975; Stephens and Stuart, 1975; Burke et al., 1982; Emonet-Dénand et al., 1988 | 5.0 | ||
-1.3 | 0.27 | 6.10-5 | Dum and Kennedy, 1980 | 3.2 | ||
2.0 | 0.21 | 2.10-2 | Burke et al., 1982 | 2.0 | ||
Mouse | -2.1 | 0.42 | <10-5 | Manuel and Heckman, 2011; Martínez-Silva et al., 2018 | 5.1 | |
1.3 | 0.64 | 2.10-4 | Manuel and Heckman, 2011 | 3.3 | ||
1.0 | 0.80 | 6.10-2 | Manuel and Heckman, 2011 | 2.5 | ||
Mean ± sd | 3.8 ± 1.5 |
Numerical data used to derive the relationships presented in Table 5.
The values returned by the three types of regression cannot be directly compared to estimate the best model. However, the power fit returned for relatively more experimental datasets than the …
Each column provides the relationships between one and the six other MN properties. All constants and properties are normalized up to a theoretical 100% maximum value. To scale the normalized …
SMN is found to vary over an average -fold range, which sets the amplitude of the theoretical ranges. Absolute {min; max} reports the minimum and maximum values retrieved in the reference studies …
Property | Unit | Absolute{min;max} | Average{min; max} | Reference studies | Theoretical range | ||
---|---|---|---|---|---|---|---|
Cat | [µm] | 2.2 | Kernell, 1966; Cullheim, 1978; Zwaagstra and Kernell, 1980; Kernell and Zwaagstra, 1981; Ulfhake and Kellerth, 1981; Zwaagstra and Kernell, 1981; Burke et al., 1982; Donselaar et al., 1986; Destombes et al., 1992 | [33; 79] | |||
[mm2] | 2.7 | Barrett and Crill, 1974; Ulfhake and Kellerth, 1981; Burke et al., 1982; Ulfhake and Kellerth, 1984; Ulfhake and Cullheim, 1988; Moschovakis et al., 1991 | [0.18; 0.44] | ||||
Rat | [µm] | 2.4 | Swett et al., 1986; Vult von Steyern et al., 1999; Copray and Kernell, 2000; Ishihara et al., 2001; Deardorff et al., 2013; Mierzejewska-Krzyżowska et al., 2014 | ||||
Mouse | [µm] | 2.5 | Vult von Steyern et al., 1999 | ||||
[mm2] | 4.4 | Amendola and Durand, 2008; Brandenburg et al., 2020 |
As described in ‘Methods’, is the average among reference studies of the ratios of minimum and maximum values; the properties experimentally vary over a -fold range. This ratio compares with …
nME, normalized maximum error; nRMSE, normalized root mean square error; , coefficient of determination between experimental and predicted quantities; , coefficient of determination of the power …
Animal | Dataset | Reference studies | ||||
---|---|---|---|---|---|---|
Rat | Gardiner, 1993; Bakels and Kernell, 1993; Lee and Heckman, 1998; Button et al., 2008; Turkin et al., 2010; Krutki et al., 2015 | 352 | 16 | 0.53 | 0.54 | |
Mouse | Delestrée et al., 2014; Martínez-Silva et al., 2018; Huh et al., 2021 | 385 | 16 | 0.46 | 0.46 | |
Manuel et al., 2009 | 1219 | 168 | 0.35 | 0.40 | ||
Manuel et al., 2009 | 1915 | 98 | 0.38 | 0.38 |
For one {A; B} global dataset | Training set | Test set |
---|---|---|
Permutation 1 | p1, p2, p3, p4 | p5 |
Permutation 2 | p2, p3, p4, p5 | p1 |
Permutation 3 | p1, p3, p4, p5 | p2 |
Permutation 4 | p1, p2, p4, p5 | p3 |
Permutation 5 | p1, p2, p3, p5 | p4 |
Datasets | Previous validation | New validation | ||||
---|---|---|---|---|---|---|
nME | nRMSE | R2 | nME | nRMSE | R2 | |
AHP = ka ∙ SMNa | 70 | 14 | 0,40 | 67 | 12 | 0,46 |
AHP = ka ∙ ACVa | 158 | 20 | 0,43 | 147 | 19 | 0,43 |
R = ka ∙ SMNa | 255 | 20 | 0,56 | 312 | 31 | 0,51 |
R = ka ∙ ACVa | 246 | 23 | 0,43 | 205 | 18 | 0,46 |
R = ka ∙ AHPa | 153 | 21 | 0,63 | 143 | 21 | 0,66 |
Ith = ka ∙ Ra | 410 | 19 | 0,37 | 300 | 19 | 0,36 |
Ith = ka ∙ ACVa | 171 | 26 | 0,34 | 155 | 20 | 0,42 |
Ith = ka ∙ AHPa | 84 | 15 | 0,59 | 78 | 17 | 0,61 |
C = ka ∙ Ra | 61 | 12 | 0,58 | 55 | 13 | 0,57 |
C = ka ∙ ITaℎ | 47 | 17 | 0,53 | 52 | 19 | 0,49 |
C = ka ∙ AHPa | 75 | 16 | 0,26 | 62 | 16 | 0,22 |
C = ka ∙ ACVa | 82 | 21 | 0,16 | 74 | 21 | 0,20 |
τ = ka ∙ Ra | 86 | 13 | 0,54 | 73 | 13 | 0,51 |
τ = ka ∙ AHPa | 88 | 14 | 0,62 | 77 | 13 | 0,64 |
τ = ka ∙ ITaℎ | 83 | 15 | 0,68 | 65 | 13 | 0,74 |
τ = ka ∙ ACVa | 81 | 17 | 0,38 | 84 | 16 | 0,44 |