Nanoscale resolution of microbial fiber degradation in action

  1. Meltem Tatli
  2. Sarah Moraïs
  3. Omar E Tovar-Herrera
  4. Yannick J Bomble
  5. Edward A Bayer
  6. Ohad Medalia  Is a corresponding author
  7. Itzhak Mizrahi  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Ben-Gurion University of the Negev, Israel
  3. National Renewable Energy Laboratory, United States
  4. Weizmann Institute of Science, Israel
  5. University of Zürich, Switzerland

Abstract

The lives of microbes unfold at the micron scale, and their molecular machineries operate at the nanoscale. Their study at these resolutions is key towards achieving a better understanding of their ecology. We focus on cellulose degradation of the canonical Clostridium thermocellum system to comprehend how microbes build and use their cellulosomal machinery at these nanometer scales. Degradation of cellulose, the most abundant organic polymer on Earth, is instrumental to the global carbon cycle. We reveal that bacterial cells form 'cellulosome capsules' driven by catalytic product-dependent dynamics, which can increase the rate of hydrolysis. Biosynthesis of this energetically costly machinery and cell growth are decoupled at the single-cell level, hinting at a division-of-labor strategy through phenotypic heterogeneity. This novel observation highlights intra-population interactions as key to understanding rates of fiber degradation.

Data availability

Structural data that support the findings of this study has been deposited in the Electron Microscopy Data Bank https://www.ebi.ac.uk/emdb/ (accession code EMD-11986). Representative data set can be found in EMPIAR under the accession number EMPIAR-10593.

The following data sets were generated

Article and author information

Author details

  1. Meltem Tatli

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah Moraïs

    Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Omar E Tovar-Herrera

    Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Yannick J Bomble

    National Renewable Energy Laboratory, Golden, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7624-8000
  5. Edward A Bayer

    Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Ohad Medalia

    Department of Biochemistry, University of Zürich, Zurich, Switzerland
    For correspondence
    omedalia@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0994-2937
  7. Itzhak Mizrahi

    Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
    For correspondence
    imizrahi@bgu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6636-8818

Funding

Deutsche Forschungsgemeinschaft (2476/2 -1)

  • Ohad Medalia
  • Itzhak Mizrahi

HORIZON EUROPE European Research Council (64084)

  • Itzhak Mizrahi

Swiss national foundation (31003A_179418)

  • Ohad Medalia

Center for Bioenergy Innovation

  • Yannick J Bomble

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Steven Smith

Version history

  1. Preprint posted: February 16, 2021 (view preprint)
  2. Received: December 21, 2021
  3. Accepted: May 30, 2022
  4. Accepted Manuscript published: May 31, 2022 (version 1)
  5. Version of Record published: June 13, 2022 (version 2)
  6. Version of Record updated: June 21, 2022 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,335
    views
  • 329
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meltem Tatli
  2. Sarah Moraïs
  3. Omar E Tovar-Herrera
  4. Yannick J Bomble
  5. Edward A Bayer
  6. Ohad Medalia
  7. Itzhak Mizrahi
(2022)
Nanoscale resolution of microbial fiber degradation in action
eLife 11:e76523.
https://doi.org/10.7554/eLife.76523

Share this article

https://doi.org/10.7554/eLife.76523

Further reading

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Carlo Giannangelo, Matthew P Challis ... Darren J Creek
    Research Article

    New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.