Meta-Research: Individual-level researcher data confirm the widening gender gap in publishing rates during COVID-19
Abstract
Publishing is part and parcel of a successful academic career, and Covid-19 has amplified gender disparities in manuscript submissions and authorships. We used longitudinal publication data on 431,207 scientists in biology, chemistry, and clinical and basic medicine to quantify the differential impact of Covid-19 on women's and men's annual publishing rates. In a difference-in-differences analysis, we estimated that the average gender difference in publication productivity increased from -0.26 in 2019 (corresponding to a 17% lower output for women than men) to -0.35 in 2020 (corresponding to a 24% lower output for women than men). An age-group comparison showed a widening gender gap for both early career and mid-career scientists. The increasing gender gap was most pronounced among highly productive authors and scientists in clinical medicine and biology. Our study demonstrates the importance of reinforcing institutional commitments to diversity through policies that support the inclusion and retention of women researchers.
Data availability
The current manuscript is a computational study, so no data have been generated for this manuscript. Source data and code will be provided on git-hub for all tables and figures.
Article and author information
Author details
Funding
Samfund og Erhverv, Det Frie Forskningsråd (DFF-0133-00165B)
- Emil Bargmann Madsen
- Mathias Wullum Nielsen
- Josefine Bjørnholm
- Jens Peter Andersen
Aarhus Universitets Forskningsfond (AUFF-F-2018-7-5)
- Jens Peter Andersen
Independent Research Fund Denmark (9130-00029B)
- Mathias Wullum Nielsen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Peter Rodgers, eLife, United Kingdom
Publication history
- Received: December 21, 2021
- Accepted: March 15, 2022
- Accepted Manuscript published: March 16, 2022 (version 1)
- Accepted Manuscript updated: March 17, 2022 (version 2)
- Version of Record published: March 23, 2022 (version 3)
Copyright
© 2022, Madsen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,647
- Page views
-
- 232
- Downloads
-
- 18
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
eLife’s Executable Research Article lets authors include live code, data and interactive figures in their published paper.
-
- Computational and Systems Biology
- Microbiology and Infectious Disease
Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.