Meta-Research: Individual-level researcher data confirm the widening gender gap in publishing rates during COVID-19
Abstract
Publications are essential for a successful academic career, and there is evidence that the COVID-19 pandemic has amplified existing gender disparities in the publishing process. We used longitudinal publication data on 431,207 authors in four disciplines - basic medicine, biology, chemistry and clinical medicine - to quantify the differential impact of COVID-19 on the annual publishing rates of men and women. In a difference-in-differences analysis, we estimated that the average gender difference in publication productivity increased from -0.26 in 2019 to -0.35 in 2020; this corresponds to the output of women being 17% lower than the output of men in 2019, and 24% lower in 2020. An age-group comparison showed a widening gender gap for both early-career and mid-career scientists. The increasing gender gap was most pronounced among highly productive authors and in biology and clinical medicine. Our study demonstrates the importance of reinforcing institutional commitments to diversity through policies that support the inclusion and retention of women in research.
Data availability
The current manuscript is a computational study, so no data have been generated for this manuscript. Source data and code will be provided on git-hub for all tables and figures.
Article and author information
Author details
Funding
Samfund og Erhverv, Det Frie Forskningsråd (DFF-0133-00165B)
- Emil Bargmann Madsen
- Mathias Wullum Nielsen
- Josefine Bjørnholm
- Jens Peter Andersen
Aarhus Universitets Forskningsfond (AUFF-F-2018-7-5)
- Jens Peter Andersen
Independent Research Fund Denmark (9130-00029B)
- Mathias Wullum Nielsen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Peter Rodgers, eLife, United Kingdom
Publication history
- Received: December 21, 2021
- Accepted: March 15, 2022
- Accepted Manuscript published: March 16, 2022 (version 1)
- Accepted Manuscript updated: March 17, 2022 (version 2)
- Version of Record published: March 23, 2022 (version 3)
Copyright
© 2022, Madsen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,636
- Page views
-
- 230
- Downloads
-
- 18
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
eLife’s Executable Research Article lets authors include live code, data and interactive figures in their published paper.
-
- Computational and Systems Biology
- Immunology and Inflammation
T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this “reversing” movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.