Mapping circuit dynamics during function and dysfunction
Abstract
Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamical states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.
Data availability
All data needed to reproduce figures in this paper are available at https://zenodo.org/record/5090130
-
Mapping circuit dynamics during function and dysfunction10.5281/zenodo.5090130.
Article and author information
Author details
Funding
National Institutes of Health (T32 NS007292)
- Srinivas Gorur-Shandilya
National Institutes of Health (R35 NS097343)
- Srinivas Gorur-Shandilya
- Eve Marder
National Institutes of Health (MH060605)
- Dirk M Bucher
- Farzan Nadim
Deutsche Forschungsgemeinschaft (DFG SCHN 1594/1-1)
- Anna C Schneider
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Gorur-Shandilya et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,492
- views
-
- 253
- downloads
-
- 15
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 15
- citations for umbrella DOI https://doi.org/10.7554/eLife.76579