Intestinal GCN2 controls Drosophila systemic growth in response to Lactiplantibacillus plantarum symbiotic cues encoded by r/tRNA operons
Abstract
Symbiotic bacteria interact with their host through symbiotic cues. Here, we took advantage of the mutualism between Drosophila and Lactiplantibacillus plantarum (Lp) to investigate a novel mechanism of host-symbiont interaction. Using chemically-defined diets, we found that association with Lp improves the growth of larvae fed amino acid-imbalanced diets, even though Lp cannot produce the limiting amino acid. We show that in this context Lp supports its host's growth through a molecular dialog that requires functional operons encoding ribosomal and transfer RNAs (r/tRNAs) in Lp and the GCN2 kinase in Drosophila's enterocytes. Our data indicate Lp's r/tRNAs are packaged in extracellular vesicles and activate GCN2 in a subset of larval enterocytes, a mechanism necessary to remodel the intestinal transcriptome and ultimately to support anabolic growth. Based on our findings, we propose a novel beneficial molecular dialog between host and microbes, which relies on a non-canonical role of GCN2 as a mediator of non-nutritional symbiotic cues encoded by r/tRNA operons.
Data availability
-RNAseq raw data are deposited at NCBI Sequence Read Archive under the numbers SUB10970982 and PRJNA799161.-Source data files containing all the numerical data used to generate the figures are provided for each figure.
Article and author information
Author details
Funding
Fondation pour la Recherche Médicale (DEQ20180339196)
- Théodore Grenier
- Jessika Consuegra
- Mariana G Ferrarini
- Houssam Akherraz
- Longwei Bai
- Yves Dusabyinema
- Isabelle Rahioui
- Pedro Da Silva
- Benjamin Gillet
- Sandrine Hughes
- Cathy I Ramos
- Renata C Matos
- François Leulier
Fondation pour la Recherche Médicale (SPF20170938612)
- Jessika Consuegra
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Grenier et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,983
- views
-
- 191
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Stem Cells and Regenerative Medicine
Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.
-
- Developmental Biology
Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.