Intestinal GCN2 controls Drosophila systemic growth in response to Lactiplantibacillus plantarum symbiotic cues encoded by r/tRNA operons

Abstract

Symbiotic bacteria interact with their host through symbiotic cues. Here, we took advantage of the mutualism between Drosophila and Lactiplantibacillus plantarum (Lp) to investigate a novel mechanism of host-symbiont interaction. Using chemically-defined diets, we found that association with Lp improves the growth of larvae fed amino acid-imbalanced diets, even though Lp cannot produce the limiting amino acid. We show that in this context Lp supports its host's growth through a molecular dialog that requires functional operons encoding ribosomal and transfer RNAs (r/tRNAs) in Lp and the GCN2 kinase in Drosophila's enterocytes. Our data indicate Lp's r/tRNAs are packaged in extracellular vesicles and activate GCN2 in a subset of larval enterocytes, a mechanism necessary to remodel the intestinal transcriptome and ultimately to support anabolic growth. Based on our findings, we propose a novel beneficial molecular dialog between host and microbes, which relies on a non-canonical role of GCN2 as a mediator of non-nutritional symbiotic cues encoded by r/tRNA operons.

Data availability

-RNAseq raw data are deposited at NCBI Sequence Read Archive under the numbers SUB10970982 and PRJNA799161.-Source data files containing all the numerical data used to generate the figures are provided for each figure.

The following data sets were generated

Article and author information

Author details

  1. Théodore Grenier

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    For correspondence
    t.grenier@hubrecht.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6022-1954
  2. Jessika Consuegra

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3185-803X
  3. Mariana G Ferrarini

    INSA-Lyon, INRAE, BF2I, University of Lyon, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Houssam Akherraz

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Longwei Bai

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Yves Dusabyinema

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Isabelle Rahioui

    INSA-Lyon, INRAE, BF2I, University of Lyon, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Pedro Da Silva

    INSA-Lyon, INRAE, BF2I, University of Lyon, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Benjamin Gillet

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Sandrine Hughes

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Cathy I Ramos

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Renata C Matos

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7480-6099
  13. François Leulier

    Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Superieure de Lyon, CNRS UMR 5242, Lyon, France
    For correspondence
    francois.leulier@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4542-3053

Funding

Fondation pour la Recherche Médicale (DEQ20180339196)

  • Théodore Grenier
  • Jessika Consuegra
  • Mariana G Ferrarini
  • Houssam Akherraz
  • Longwei Bai
  • Yves Dusabyinema
  • Isabelle Rahioui
  • Pedro Da Silva
  • Benjamin Gillet
  • Sandrine Hughes
  • Cathy I Ramos
  • Renata C Matos
  • François Leulier

Fondation pour la Recherche Médicale (SPF20170938612)

  • Jessika Consuegra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Grenier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,908
    views
  • 185
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Théodore Grenier
  2. Jessika Consuegra
  3. Mariana G Ferrarini
  4. Houssam Akherraz
  5. Longwei Bai
  6. Yves Dusabyinema
  7. Isabelle Rahioui
  8. Pedro Da Silva
  9. Benjamin Gillet
  10. Sandrine Hughes
  11. Cathy I Ramos
  12. Renata C Matos
  13. François Leulier
(2023)
Intestinal GCN2 controls Drosophila systemic growth in response to Lactiplantibacillus plantarum symbiotic cues encoded by r/tRNA operons
eLife 12:e76584.
https://doi.org/10.7554/eLife.76584

Share this article

https://doi.org/10.7554/eLife.76584

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.