A dysmorphic mouse model reveals developmental interactions of chondrocranium and dermatocranium

  1. Susan M Motch Perrine  Is a corresponding author
  2. M Kathleen Pitirri
  3. Emily L Durham
  4. Mizuho Kawasaki
  5. Hao Zheng
  6. Danny Z Chen
  7. Kazuhiko Kawasaki
  8. Joan T Richtsmeier  Is a corresponding author
  1. The Pennsylvania State University, United States
  2. University of Notre Dame, United States
  3. Pennsylvania State University, United States

Abstract

The cranial endo- and dermal skeletons, which comprise the vertebrate skull, evolved independently over 470 million years ago and form separately during embryogenesis. In mammals, much of the cartilaginous chondrocranium is transient, undergoing endochondral ossification or disappearing, so its role in skull morphogenesis is not well studied and it remains an enigmatic structure. We provide complete three-dimensional (3D) reconstructions of the laboratory mouse chondrocranium from embryonic day 13.5 through 17.5 using a novel methodology of uncertainty-guided segmentation of phosphotungstic enhanced 3D microcomputed tomography images with sparse annotation. We evaluate the embryonic mouse chondrocranium and dermatocranium in 3D and delineate the effects of a Fgfr2 variant on embryonic chondrocranial cartilages and on their association with forming dermal bones using the Fgfr2cC342Y/+ Crouzon syndrome mouse. We show that the dermatocranium develops outside of and in shapes that conform to the chondrocranium. Results reveal direct effects of the Fgfr2 variant on embryonic cartilage, on chondrocranium morphology, and on the association between chondrocranium and dermatocranium development. Histologically we observe a trend of relatively more chondrocytes, larger chondrocytes, and/or more matrix in the Fgfr2cC342Y/+ embryos at all timepoints before the chondrocranium begins to disintegrate at E16.5. The chondrocrania and forming dermatocrania of Fgfr2cC342Y/+ embryos are relatively large, but a contrasting trend begins at E16.5 and continues into early postnatal (P0 and P2) timepoints, with the skulls of older Fgfr2cC342Y/+ mice reduced in most dimensions compared to Fgfr2c+/+ littermates. Our findings have implications for the study and treatment of human craniofacial disease, for understanding the impact of chondrocranial morphology on skull growth, and potentially on the evolution of skull morphology.

Data availability

Due to the large size of the majority of these data, data have been made available through Penn State University Libraries ScholarSphere repository at DOI 10.26207/qgke-r185 and include: bone micro-CT images, PTA-e micro-CT images, 3D reconstruction examples of the chondrocrania of one unaffected (Fgfr2c+/+) and one affected (Fgfr2cC342Y/+) at E13.5, E14.5, E15.5, E16.5, and E17.5, bone volumes, histological images, histomorphometric data, 3D landmark coordinate data, correlation matrices estimated by MIBoot used in MI analyses, PCA output, and suture scores. Information on how to download the WinEDMA programs can be found at https://getahead.la.psu.edu/resources/edma and the EDMAinR programs are available on github (https://github.com/psolymos/EDMAinR). Code for automatic chondrocranium segmentation with very sparse annotation via uncertainty-guided self-training is available through https://github.com/ndcse-medical/CartSeg_UGST. PTA-e staining protocols for various embryonic ages of mice are available: https://doi.org/10.1002/dvdy.136

The following data sets were generated

Article and author information

Author details

  1. Susan M Motch Perrine

    Department of Anthropology, The Pennsylvania State University, University Park, United States
    For correspondence
    qzk2@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3412-221X
  2. M Kathleen Pitirri

    Department of Anthropology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Emily L Durham

    Department of Anthropology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mizuho Kawasaki

    Department of Anthropology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hao Zheng

    Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9790-7607
  6. Danny Z Chen

    Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kazuhiko Kawasaki

    Department of Anthropology, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joan T Richtsmeier

    Department of Anthropology, Pennsylvania State University, University Park, United States
    For correspondence
    jta10@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0239-5822

Funding

National Institute of Dental and Craniofacial Research (R01DE027677)

  • Joan T Richtsmeier

Eunice Kennedy Shriver National Institute of Child Health and Human Development (P01HD078233)

  • Joan T Richtsmeier

National Institute of Dental and Craniofacial Research (R01 DE031439)

  • Joan T Richtsmeier

National Science Foundation (CCF-1617735)

  • Danny Z Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#446558) of the Pennsylvania State University.

Copyright

© 2022, Motch Perrine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,532
    views
  • 277
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susan M Motch Perrine
  2. M Kathleen Pitirri
  3. Emily L Durham
  4. Mizuho Kawasaki
  5. Hao Zheng
  6. Danny Z Chen
  7. Kazuhiko Kawasaki
  8. Joan T Richtsmeier
(2022)
A dysmorphic mouse model reveals developmental interactions of chondrocranium and dermatocranium
eLife 11:e76653.
https://doi.org/10.7554/eLife.76653

Share this article

https://doi.org/10.7554/eLife.76653

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Subhradip Das, Sushmitha Hegde ... Girish S Ratnaparkhi
    Research Article

    Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it’s protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it’s ‘loss’ and ‘gain’ results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.