Magnetic stimulation allows focal activation of the mouse cochlea

  1. Jae-Ik Lee
  2. Richard Seist
  3. Stephen McInturff
  4. Daniel J Lee
  5. Christian Brown
  6. Konstantina M Stankovic  Is a corresponding author
  7. Shelley Fried  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Massachusetts Eye and Ear Infirmary, United States

Abstract

Cochlear implants (CIs) provide sound and speech sensations for patients with severe to profound hearing loss by electrically stimulating the auditory nerve. While most CI users achieve some degree of open set word recognition under quiet conditions, hearing that utilizes complex neural coding (e.g., appreciating music) has proved elusive, probably because of the inability of CIs to create narrow regions of spectral activation. Several novel approaches have recently shown promise for improving spatial selectivity, but substantial design differences from conventional CIs will necessitate much additional safety and efficacy testing before clinical viability is established. Outside the cochlea, magnetic stimulation from small coils (micro-coils) has been shown to confine activation more narrowly than that from conventional micro-electrodes, raising the possibility that coil-based stimulation of the cochlea could improve the spectral resolution of CIs. To explore this, we delivered magnetic stimulation from micro-coils to multiple locations of the cochlea and measured the spread of activation utilizing a multi-electrode array inserted into the inferior colliculus; responses to magnetic stimulation were compared to analogous experiments with conventional micro-electrodes as well as to responses when presenting auditory monotones. Encouragingly, the extent of activation with micro-coils was ~60% narrower compared to electric stimulation and largely similar to the spread arising from acoustic stimulation. The dynamic range of coils was more than three times larger than that of electrodes, further supporting a smaller spread of activation. While much additional testing is required, these results support the notion that magnetic micro-coil CIs can produce a larger number of independent spectral channels and may therefore improve auditory outcomes. Further, because coil-based devices are structurally similar to existing CIs, fewer impediments to clinical translational are likely to arise.

Data availability

The source data and codes are available on the Open Science Framework (DOI 10.17605/OSF.IO/Y7ZRX).

The following data sets were generated

Article and author information

Author details

  1. Jae-Ik Lee

    Department of Neurosurgery, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9006-3405
  2. Richard Seist

    Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen McInturff

    Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel J Lee

    Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Brown

    Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Konstantina M Stankovic

    Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, United States
    For correspondence
    kstankovic@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Shelley Fried

    Department of Neurosurgery, Massachusetts General Hospital, Boston, United States
    For correspondence
    fried.shelley@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6456-8656

Funding

National Institutes of Health (DC 01089)

  • Stephen McInturff
  • Daniel J Lee
  • Christian Brown

Fondation Bertarelli (Translational Neuroscience and Neuro-Engineering)

  • Stephen McInturff
  • Daniel J Lee
  • Christian Brown

National Institute on Deafness and Other Communication Disorders (R01 DC015824)

  • Richard Seist
  • Konstantina M Stankovic

Fondation Bertarelli (Bertarelli Professorship)

  • Richard Seist
  • Konstantina M Stankovic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Ethics

Animal experimentation: All procedures were approved by the Institutional Animal Care and Use Committee of Massachusetts Eye and Ear, and carried out in accordance with the NIH Guide for the Care and Use of Laboratory Animals.(protocol# 15-003)

Version history

  1. Received: December 29, 2021
  2. Preprint posted: January 12, 2022 (view preprint)
  3. Accepted: May 20, 2022
  4. Accepted Manuscript published: May 24, 2022 (version 1)
  5. Version of Record published: June 8, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,182
    views
  • 261
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jae-Ik Lee
  2. Richard Seist
  3. Stephen McInturff
  4. Daniel J Lee
  5. Christian Brown
  6. Konstantina M Stankovic
  7. Shelley Fried
(2022)
Magnetic stimulation allows focal activation of the mouse cochlea
eLife 11:e76682.
https://doi.org/10.7554/eLife.76682

Share this article

https://doi.org/10.7554/eLife.76682

Further reading

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.