Differences in pathways contributing to thyroid hormone effects on postnatal cartilage calcification versus secondary ossification center development

  1. Gustavo A Gomez
  2. Patrick Aghajanian
  3. Sheila Pourteymoor
  4. Destiney Larkin
  5. Subburaman Mohan  Is a corresponding author
  1. Jerry L. Pettis Memorial VA Medical Center, United States
  2. Fulgent Genetics, United States

Abstract

The proximal and distal femur epiphysis of mice are both weight bearing structures derived from chondrocytes but differ in development. Mineralization at the distal epiphysis occurs in an osteoblast rich secondary ossification center (SOC), while the chondrocytes of the proximal femur head (FH) in particular, are directly mineralized. Thyroid hormone (TH) plays important roles in distal knee SOC formation, but whether TH also affects proximal FH development remains unexplored. Here, we found that TH controls chondrocyte maturation and mineralization at the FH in vivo through studies in Thyroid stimulating hormone receptor (Tshr-/-) hypothyroid mice by X-ray, histology, transcriptional profiling, and immunofluorescence staining. Both in vivo, and in vitro studies conducted in ATDC5 chondrocyte progenitors concur that TH regulates expression of genes that modulate mineralization (Ibsp, Bglap2, Dmp1, Spp1, and Alpl). Our work also delineates differences in prominent transcription factor regulation of genes involved in the different mechanisms leading to proximal FH cartilage calcification and endochondral ossification at the distal femur. The information on the molecular pathways contributing to postnatal cartilage calcification can provide insights on therapeutic strategies to treat pathological calcification that occurs in soft tissues such as aorta, kidney, and articular cartilage.

Data availability

The numeral data used to generate figures were uploaded separately as: Figure 3 -Source Data 1-3; Figure 9 - Source Data 1-6; Figure 9- figure supplement 1- source data 1-4; Figure 9- figure supplement 2-source data 1; Figure 9- figure supplement 3- source data 1

Article and author information

Author details

  1. Gustavo A Gomez

    Musculoskeletal Disease Centre, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, United States
    Competing interests
    No competing interests declared.
  2. Patrick Aghajanian

    Fulgent Genetics, El Monte, United States
    Competing interests
    Patrick Aghajanian, Patrick Aghajanian is affiliated with Fulgent Genetics. The author has no financial interests to declare..
  3. Sheila Pourteymoor

    Musculoskeletal Disease Centre, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, United States
    Competing interests
    No competing interests declared.
  4. Destiney Larkin

    Musculoskeletal Disease Centre, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, United States
    Competing interests
    No competing interests declared.
  5. Subburaman Mohan

    Musculoskeletal Disease Centre, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, United States
    For correspondence
    Subburaman.Mohan@va.gov
    Competing interests
    Subburaman Mohan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0063-986X

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR048139)

  • Subburaman Mohan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Institutional Animal Care and Use Committees of the VA Loma Linda Healthcare System (Permit Number: 0029/204). Every effort was made to minimize animal suffering.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 645
    views
  • 121
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gustavo A Gomez
  2. Patrick Aghajanian
  3. Sheila Pourteymoor
  4. Destiney Larkin
  5. Subburaman Mohan
(2022)
Differences in pathways contributing to thyroid hormone effects on postnatal cartilage calcification versus secondary ossification center development
eLife 11:e76730.
https://doi.org/10.7554/eLife.76730

Share this article

https://doi.org/10.7554/eLife.76730

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.

    1. Cancer Biology
    2. Genetics and Genomics
    Nicole S Arellano, Shannon E Elf
    Insight

    A new approach helps examine the proportion of cancerous and healthy stem cells in patients with chronic myeloid leukemia and how this influences treatment outcomes.