Glycan processing in the Golgi: optimal information coding and constraints on cisternal number and enzyme specificity

  1. Alkesh Yadav
  2. Quentin Vagne
  3. Pierre Sens
  4. Garud Iyengar  Is a corresponding author
  5. Madan Rao  Is a corresponding author
  1. Raman Research Institute, India
  2. Institut Curie, CNRS UMR168, France
  3. Columbia University, United States
  4. National Centre for Biological Sciences, India

Abstract

Many proteins that undergo sequential enzymatic modification in the Golgi cisternae are displayed at the plasma membrane as cell identity markers. The modified proteins, called glycans, represent a molecular code. The fidelity of this glycan code is measured by how accurately the glycan synthesis machinery realises the desired target glycan distribution for a particular cell type and niche. In this paper, we construct a simplified chemical synthesis model to quantitatively analyse the tradeoffs between the number of cisternae, and the number and specificity of enzymes, required to synthesize a prescribed target glycan distribution of a certain complexity to within a given fidelity. We find that to synthesize complex distributions, such as those observed in real cells, one needs to have multiple cisternae and precise enzyme partitioning in the Golgi. Additionally, for fixed number of enzymes and cisternae, there is an optimal level of specificity (promiscuity) of enzymes that achieves the target distribution with high fidelity. The geometry of the fidelity landscape in the multidimensional space of the number and specificity of enzymes, inter-cisternal transfer rates, and number of cisternae, provides a measure for robustness and identifies stiff and sloppy directions. Our results show how the complexity of the target glycan distribution and number of glycosylation enzymes places functional constraints on the Golgi cisternal number and enzyme specificity.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. The following repository on github contains the code and the data (numerical data + Mass Spec data) that are used in the paper: https://github.com/alkeshyadav/Glycosylation

The following data sets were generated

Article and author information

Author details

  1. Alkesh Yadav

    Raman Research Institute, Bangalore, India
    Competing interests
    No competing interests declared.
  2. Quentin Vagne

    Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    No competing interests declared.
  3. Pierre Sens

    Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    Pierre Sens, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4523-3791
  4. Garud Iyengar

    Industrial Engineering and Operations Research, Columbia University, New York, United States
    For correspondence
    garud@ieor.columbia.edu
    Competing interests
    No competing interests declared.
  5. Madan Rao

    Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    madan@ncbs.res.in
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6210-6386

Funding

Department of Atomic Energy, Government of India (RTI4006)

  • Madan Rao

Simons Foundation (287975)

  • Madan Rao

JC Bose Fellowship (DST-SERB)

  • Madan Rao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Yadav et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,036
    views
  • 253
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alkesh Yadav
  2. Quentin Vagne
  3. Pierre Sens
  4. Garud Iyengar
  5. Madan Rao
(2022)
Glycan processing in the Golgi: optimal information coding and constraints on cisternal number and enzyme specificity
eLife 11:e76757.
https://doi.org/10.7554/eLife.76757

Share this article

https://doi.org/10.7554/eLife.76757

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Iksoo Chang, Taegon Chung, Sangyeol Kim
    Research Article

    Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system Caenorhabditis elegans for which the structural anatomical connectome was completely known recently. We evaluated how strongly the sinusoidal wave was transmitted between arbitrary two cells in the model network. The region of cell-pairs that are good at transmitting waves changed according to the wavenumber of the wave, for which we named a wavenumber-dependent transmission map. Also, we unraveled that (1) the transmission of all cell-pairs disappeared beyond a threshold wavenumber, (2) long distance and regular patterned transmission existed in the body-wall muscles part of the model network, and (3) major hub cell-pairs of the transmission were identified for many wavenumber conditions. A theoretical and computational model presented in this study provided fundamental insight for understanding how the multi-path constructive/destructive interference of the subthreshold oscillations propagating on electrically coupled neural networks could generate wavenumber-dependent synchronized rhythmic activity.

    1. Physics of Living Systems
    Sina Heydari, Haotian Hang, Eva Kanso
    Research Article

    The coordinated motion of animal groups through fluids is thought to reduce the cost of locomotion to individuals in the group. However, the connection between the spatial patterns observed in collectively moving animals and the energetic benefits at each position within the group remains unclear. To address this knowledge gap, we study the spontaneous emergence of cohesive formations in groups of fish, modeled as flapping foils, all heading in the same direction. We show in pairwise formations and with increasing group size that (1) in side-by-side arrangements, the reciprocal nature of flow coupling results in an equal distribution of energy requirements among all members, with reduction in cost of locomotion for swimmers flapping inphase but an increase in cost for swimmers flapping antiphase, and (2) in inline arrangements, flow coupling is non-reciprocal for all flapping phase, with energetic savings in favor of trailing swimmers, but only up to a finite number of swimmers, beyond which school cohesion and energetic benefits are lost at once. We explain these findings mechanistically and we provide efficient diagnostic tools for identifying locations in the wake of single and multiple swimmers that offer opportunities for hydrodynamic benefits to aspiring followers. Our results imply a connection between the resources generated by flow physics and social traits that influence greedy and cooperative group behavior.