Abstract

Many age-associated changes in the human hematopoietic system have been reproduced in murine models; however, such changes have not been as robustly explored in rats despite the fact these larger rodents are more physiologically similar to humans. We examined peripheral blood of male F344 rats ranging from three to twenty-seven months of age and found significant age-associated changes with distinct leukocyte population shifts. We report CD25+ CD4+ population frequency is a strong predictor of healthy aging, generate a model using blood parameters, and find rats with blood profiles that diverge from chronologic age indicate debility; thus, assessments of blood composition may be useful for non-lethal disease profiling or as a surrogate measure for efficacy of aging interventions. Importantly, blood parameters and DNA methylation alterations, defined distinct juncture points during aging, supporting a non-linear aging process. Our results suggest these inflection points are important considerations for aging interventions. Overall, we present rat blood aging metrics that can serve as a resource to evaluate health and the effects of interventions in a model system physiologically more reflective of humans.

Data availability

The data that support the findings of this study are available in the Supplementary Material and Supplementary Tables of this article. The DNA methylation raw data is available via GEO Accession (GSE161141). FCS files have been uploaded to FlowRepository (FR-FCM-Z59K)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hagai Yanai

    Flow Cytometry Core, National Institute on Aging, Baltimore, United States
    For correspondence
    hagai.yanai@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher Dunn

    Flow Cytometry Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7899-0110
  3. Bongsoo Park

    Epigenetics and Stem Cell Unit, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Coletta

    Computational Biology and Genomics Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ross A McDevitt

    Comparative Medicine Section, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3722-9047
  6. Taylor McNeely

    Epigenetics and Stem Cell Unit, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Leone

    Epigenetics and Stem Cell Unit, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert P Wersto

    Flow Cytometry Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kathy A Perdue

    Comparative Medicine Section, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Isabel Beerman

    Epigenetics and Stem Cell Unit, National Institute on Aging, Baltimore, United States
    For correspondence
    isabel.beerman@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7758-8231

Funding

National Institutes of Health (Intramural NIA)

  • Isabel Beerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals and approved by the NIA Animal Care and Use Committee (ASP 467-CMS-2018 and 469-TGB-2022)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,133
    views
  • 221
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hagai Yanai
  2. Christopher Dunn
  3. Bongsoo Park
  4. Christopher Coletta
  5. Ross A McDevitt
  6. Taylor McNeely
  7. Michael Leone
  8. Robert P Wersto
  9. Kathy A Perdue
  10. Isabel Beerman
(2022)
Male rat leukocyte population dynamics predict a window for intervention in aging
eLife 11:e76808.
https://doi.org/10.7554/eLife.76808

Share this article

https://doi.org/10.7554/eLife.76808

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Catherine A Weibel, Andrew L Wheeler ... Joanna Masel
    Research Article

    The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an ‘effective population size’ is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species’ effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here, we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback–Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Paul A Torrillo, Tami D Lieberman
    Research Article

    When examining bacterial genomes for evidence of past selection, the results depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed by dN/dS, the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with opposite implications for dynamical intuition and applications of dN/dS. Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain the dN/dS decay given only dozens of locally fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values of dN/dS obtained from long timescales with caution as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short timescales.