Abstract

Many age-associated changes in the human hematopoietic system have been reproduced in murine models; however, such changes have not been as robustly explored in rats despite the fact these larger rodents are more physiologically similar to humans. We examined peripheral blood of male F344 rats ranging from three to twenty-seven months of age and found significant age-associated changes with distinct leukocyte population shifts. We report CD25+ CD4+ population frequency is a strong predictor of healthy aging, generate a model using blood parameters, and find rats with blood profiles that diverge from chronologic age indicate debility; thus, assessments of blood composition may be useful for non-lethal disease profiling or as a surrogate measure for efficacy of aging interventions. Importantly, blood parameters and DNA methylation alterations, defined distinct juncture points during aging, supporting a non-linear aging process. Our results suggest these inflection points are important considerations for aging interventions. Overall, we present rat blood aging metrics that can serve as a resource to evaluate health and the effects of interventions in a model system physiologically more reflective of humans.

Data availability

The data that support the findings of this study are available in the Supplementary Material and Supplementary Tables of this article. The DNA methylation raw data is available via GEO Accession (GSE161141). FCS files have been uploaded to FlowRepository (FR-FCM-Z59K)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hagai Yanai

    Flow Cytometry Core, National Institute on Aging, Baltimore, United States
    For correspondence
    hagai.yanai@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher Dunn

    Flow Cytometry Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7899-0110
  3. Bongsoo Park

    Epigenetics and Stem Cell Unit, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Coletta

    Computational Biology and Genomics Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ross A McDevitt

    Comparative Medicine Section, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3722-9047
  6. Taylor McNeely

    Epigenetics and Stem Cell Unit, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Leone

    Epigenetics and Stem Cell Unit, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert P Wersto

    Flow Cytometry Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kathy A Perdue

    Comparative Medicine Section, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Isabel Beerman

    Epigenetics and Stem Cell Unit, National Institute on Aging, Baltimore, United States
    For correspondence
    isabel.beerman@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7758-8231

Funding

National Institutes of Health (Intramural NIA)

  • Isabel Beerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bérénice A Benayoun, University of Southern California, United States

Ethics

Animal experimentation: All experimental procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals and approved by the NIA Animal Care and Use Committee (ASP 467-CMS-2018 and 469-TGB-2022)

Version history

  1. Received: January 5, 2022
  2. Preprint posted: January 14, 2022 (view preprint)
  3. Accepted: May 3, 2022
  4. Accepted Manuscript published: May 4, 2022 (version 1)
  5. Version of Record published: May 30, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,069
    views
  • 207
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hagai Yanai
  2. Christopher Dunn
  3. Bongsoo Park
  4. Christopher Coletta
  5. Ross A McDevitt
  6. Taylor McNeely
  7. Michael Leone
  8. Robert P Wersto
  9. Kathy A Perdue
  10. Isabel Beerman
(2022)
Male rat leukocyte population dynamics predict a window for intervention in aging
eLife 11:e76808.
https://doi.org/10.7554/eLife.76808

Share this article

https://doi.org/10.7554/eLife.76808

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Evolutionary Biology
    Robert Horvath, Nikolaos Minadakis ... Anne C Roulin
    Research Article

    Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.