Palatal morphology predicts the paleobiology of early salamanders

  1. Jia Jia  Is a corresponding author
  2. Guangzhao Li
  3. Ke-Qin Gao  Is a corresponding author
  1. University of Calgary, Canada
  2. George Washington University, United States
  3. Peking University, China

Abstract

Ecological preferences and life history strategies have enormous impacts on the evolution and phenotypic diversity of salamanders, but the yet established reliable ecological indicators from bony skeletons hinder investigations into the paleobiology of early salamanders. Here we statistically demonstrate, by using time-calibrated cladograms and geometric morphometric analysis on 71 specimens in 36 species, that both the shape of the palate and many non-shape covariates particularly associated with vomerine teeth are ecologically informative in early stem- and basal crown-group salamanders. Disparity patterns within the morphospace of the palate in ecological preferences, life history strategies and taxonomic affiliations were analyzed in detail, and evolutionary rates and ancestral states of the palate were reconstructed. Our results show that the palate is heavily impacted by convergence constrained by feeding mechanisms and also exhibits clear stepwise evolutionary patterns with alternative phenotypic configurations to cope with similar functional demand. Salamanders are diversified ecologically before the Middle Jurassic and achieved all their present ecological preferences in the Early Cretaceous. Our results reveal that the last common ancestor of all salamanders shares with other modern amphibians a unified biphasic ecological preference, and metamorphosis is significant in the expansion of ecomorphospace of the palate in early salamanders.

Data availability

All data needed to evaluate the conclusions are included in the manuscript and the Supplementary file 1. Details of specimens, CT parameters and raw landmark coordinates and centroid sizes are available in three CSV files in the online Dryad repository (https://doi.org/10.5061/dryad.c59zw3r8x). Source codes for R and SAS used in this study is available at GitHub (https://github.com/PaleoSalaman).

The following data sets were generated

Article and author information

Author details

  1. Jia Jia

    Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
    For correspondence
    jia.jia@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8243-0156
  2. Guangzhao Li

    Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ke-Qin Gao

    School of Earth and Space Sciences, Peking University, Beijing, China
    For correspondence
    kqgao@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (41702002)

  • Jia Jia

National Natural Science Foundation of China (41872008)

  • Ke-Qin Gao

State Key Laboratory of Palaeobiology and Stratigraphy (193111)

  • Jia Jia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Min Zhu, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, China

Version history

  1. Received: January 7, 2022
  2. Preprint posted: January 17, 2022 (view preprint)
  3. Accepted: May 15, 2022
  4. Accepted Manuscript published: May 16, 2022 (version 1)
  5. Version of Record published: June 6, 2022 (version 2)

Copyright

© 2022, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,253
    views
  • 188
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jia Jia
  2. Guangzhao Li
  3. Ke-Qin Gao
(2022)
Palatal morphology predicts the paleobiology of early salamanders
eLife 11:e76864.
https://doi.org/10.7554/eLife.76864

Share this article

https://doi.org/10.7554/eLife.76864

Further reading

    1. Evolutionary Biology
    Erica R Kwiatkowski, Patrick Emery
    Insight

    Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.