Palatal morphology predicts the paleobiology of early salamanders

  1. Jia Jia  Is a corresponding author
  2. Guangzhao Li
  3. Ke-Qin Gao  Is a corresponding author
  1. University of Calgary, Canada
  2. George Washington University, United States
  3. Peking University, China


Ecological preferences and life history strategies have enormous impacts on the evolution and phenotypic diversity of salamanders, but the yet established reliable ecological indicators from bony skeletons hinder investigations into the paleobiology of early salamanders. Here we statistically demonstrate, by using time-calibrated cladograms and geometric morphometric analysis on 71 specimens in 36 species, that both the shape of the palate and many non-shape covariates particularly associated with vomerine teeth are ecologically informative in early stem- and basal crown-group salamanders. Disparity patterns within the morphospace of the palate in ecological preferences, life history strategies and taxonomic affiliations were analyzed in detail, and evolutionary rates and ancestral states of the palate were reconstructed. Our results show that the palate is heavily impacted by convergence constrained by feeding mechanisms and also exhibits clear stepwise evolutionary patterns with alternative phenotypic configurations to cope with similar functional demand. Salamanders are diversified ecologically before the Middle Jurassic and achieved all their present ecological preferences in the Early Cretaceous. Our results reveal that the last common ancestor of all salamanders shares with other modern amphibians a unified biphasic ecological preference, and metamorphosis is significant in the expansion of ecomorphospace of the palate in early salamanders.

Data availability

All data needed to evaluate the conclusions are included in the manuscript and the Supplementary file 1. Details of specimens, CT parameters and raw landmark coordinates and centroid sizes are available in three CSV files in the online Dryad repository ( Source codes for R and SAS used in this study is available at GitHub (

The following data sets were generated

Article and author information

Author details

  1. Jia Jia

    Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8243-0156
  2. Guangzhao Li

    Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ke-Qin Gao

    School of Earth and Space Sciences, Peking University, Beijing, China
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.


National Natural Science Foundation of China (41702002)

  • Jia Jia

National Natural Science Foundation of China (41872008)

  • Ke-Qin Gao

State Key Laboratory of Palaeobiology and Stratigraphy (193111)

  • Jia Jia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Min Zhu, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, China

Publication history

  1. Received: January 7, 2022
  2. Preprint posted: January 17, 2022 (view preprint)
  3. Accepted: May 15, 2022
  4. Accepted Manuscript published: May 16, 2022 (version 1)
  5. Version of Record published: June 6, 2022 (version 2)


© 2022, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 933
    Page views
  • 154
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jia Jia
  2. Guangzhao Li
  3. Ke-Qin Gao
Palatal morphology predicts the paleobiology of early salamanders
eLife 11:e76864.
  1. Further reading

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    James W Truman, Jacquelyn Price ... Tzumin Lee
    Research Article

    We have focused on the mushroom bodies (MB) of Drosophila to determine how the larval circuits are formed and then transformed into those of the adult at metamorphosis. The adult MB has a core of thousands of Kenyon neurons; axons of the early-born g class form a medial lobe and those from later-born a'b' and ab classes form both medial and vertical lobes. The larva, however, hatches with only g neurons and forms a vertical lobe 'facsimile' using larval-specific axon branches from its g neurons. Computations by the MB involves MB input (MBINs) and output (MBONs) neurons that divide the lobes into discrete compartments. The larva has 10 such compartments while the adult MB has 16. We determined the fates of 28 of the 32 types of MBONs and MBINs that define the 10 larval compartments. Seven larval compartments are eventually incorporated into the adult MB; four of their larval MBINs die, while 12 MBINs/MBONs continue into the adult MB although with some compartment shifting. The remaining three larval compartments are larval specific, and their MBIN/MBONs trans-differentiate at metamorphosis, leaving the MB and joining other adult brain circuits. With the loss of the larval vertical lobe facsimile, the adult vertical lobes, are made de novo at metamorphosis, and their MBONs/MBINs are recruited from the pool of adult-specific cells. The combination of cell death, compartment shifting, trans-differentiation, and recruitment of new neurons result in no larval MBIN-MBON connections persisting through metamorphosis. At this simple level, then, we find no anatomical substrate for a memory trace persisting from larva to adult. For the neurons that trans-differentiate, our data suggest that their adult phenotypes are in line with their evolutionarily ancestral roles while their larval phenotypes are derived adaptations for the larval stage. These cells arise primarily within lineages that also produce permanent MBINs and MBONs, suggesting that larval specifying factors may allow information related to birth-order or sibling identity to be interpreted in a modified manner in these neurons to cause them to adopt a modified, larval phenotype. The loss of such factors at metamorphosis, though, would then allow these cells to adopt their ancestral phenotype in the adult system.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Ipsita Agarwal, Zachary L Fuller ... Molly Przeworski
    Research Article

    Causal loss-of-function (LOF) variants for Mendelian and severe complex diseases are enriched in 'mutation intolerant' genes. We show how such observations can be interpreted in light of a model of mutation-selection balance, and use the model to relate the pathogenic consequences of LOF mutations at present-day to their evolutionary fitness effects. To this end, we first infer posterior distributions for the fitness costs of LOF mutations in 17,318 autosomal and 679 X-linked genes from exome sequences in 56,855 individuals. Estimated fitness costs for the loss of a gene copy are typically above 1%; they tend to be largest for X-linked genes, whether or not they have a Y homolog, followed by autosomal genes and genes in the pseudoautosomal region. We then compare inferred fitness effects for all possible de novo LOF mutations to those of de novo mutations identified in individuals diagnosed with one of six severe, complex diseases or developmental disorders. Probands carry an excess of mutations with estimated fitness effects above 10%; as we show by simulation, when sampled in the population, such highly deleterious mutations are typically only a couple of generations old. Moreover, the proportion of highly deleterious mutations carried by probands reflects the typical age of onset of the disease. The study design also has a discernible influence: a greater proportion of highly deleterious mutations is detected in pedigree than case-control studies, and for autism, in simplex than multiplex families and in female versus male probands. Thus, anchoring observations in human genetics to a population genetic model allows us to learn about the fitness effects of mutations identified by different mapping strategies and for different traits.