Distinct responses to rare codons in select Drosophila tissues
Abstract
Codon usage bias has long been appreciated to influence protein production. Yet, relatively few studies have analyzed the impacts of codon usage on tissue-specific mRNA and protein expression. Here, we use codon-modified reporters to perform an organism-wide screen in Drosophila melanogaster for distinct tissue responses to codon usage bias. These reporters reveal a cliff-like decline of protein expression near the limit of rare codon usage in endogenously expressed Drosophila genes. Near the edge of this limit, however, we find the testis and brain are uniquely capable of expressing rare codon-enriched reporters. We define a new metric of tissue-specific codon usage, the tissue-apparent Codon Adaptation Index, to reveal a conserved enrichment for rare codon usage in the endogenously expressed genes of both Drosophila and human testis. We further demonstrate a role for rare codons in an evolutionarily young testis-specific gene, RpL10Aa. Optimizing RpL10Aa codons disrupts female fertility. Our work highlights distinct responses to rarely used codons in select tissues, revealing a critical role for codon bias in tissue biology.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figs 1, 3, and 5.
Article and author information
Author details
Funding
American Cancer Society (RSG-128945)
- Donald T Fox
National Science Foundation (GRFP)
- Scott R Allen
National Institutes of Health (R01CA94184)
- Christopher M Counter
National Institutes of Health (P01CA203657)
- Christopher M Counter
National Institutes of Health (R35GM140844)
- Alain Laederach
National Institutes of Health (R01HL111527)
- Alain Laederach
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
Version history
- Preprint posted: January 6, 2022 (view preprint)
- Received: January 7, 2022
- Accepted: May 5, 2022
- Accepted Manuscript published: May 6, 2022 (version 1)
- Version of Record published: May 18, 2022 (version 2)
Copyright
© 2022, Allen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,955
- Page views
-
- 517
- Downloads
-
- 6
- Citations
Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Neuroscience
The hippocampus executes crucial functions from declarative memory to adaptive behaviors associated with cognition and emotion. However, the mechanisms of how morphogenesis and functions along the hippocampal dorsoventral axis are differentiated and integrated are still largely unclear. Here, we show that Nr2f1 and Nr2f2 genes are distinctively expressed in the dorsal and ventral hippocampus, respectively. The loss of Nr2f2 results in ectopic CA1/CA3 domains in the ventral hippocampus. The deficiency of Nr2f1 leads to the failed specification of dorsal CA1, among which there are place cells. The deletion of both Nr2f genes causes almost agenesis of the hippocampus with abnormalities of trisynaptic circuit and adult neurogenesis. Moreover, Nr2f1/2 may cooperate to guarantee appropriate morphogenesis and function of the hippocampus by regulating the Lhx5-Lhx2 axis. Our findings revealed a novel mechanism that Nr2f1 and Nr2f2 converge to govern the differentiation and integration of distinct characteristics of the hippocampus in mice.
-
- Developmental Biology
- Evolutionary Biology
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.