SLC38A2 provides proline to fulfil unique synthetic demands arising during osteoblast differentiation and bone formation

  1. Leyao Shen
  2. Yilin Yu
  3. Yunji Zhou
  4. Shondra M Pruett-Miller
  5. Guo-Fang Zhang
  6. Courtney M Karner  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Duke University, United States
  3. St Jude Children's Research Hospital, United States
  4. Duke University Medical Center, United States

Abstract

Cellular differentiation is associated with the acquisition of a unique protein signature which is essential to attain the ultimate cellular function and activity of the differentiated cell. This is predicted to result in unique biosynthetic demands that arise during differentiation. Using a bioinformatic approach, we discovered osteoblast differentiation is associated with increased demand for the amino acid proline. When compared to other differentiated cells, osteoblast-associated proteins including RUNX2, OSX, OCN and COL1A1 are significantly enriched in proline. Using a genetic and metabolomic approach, we demonstrate that the neutral amino acid transporter SLC38A2 acts cell autonomously to provide proline to facilitate the efficient synthesis of proline-rich osteoblast proteins. Genetic ablation of SLC38A2 in osteoblasts limits both osteoblast differentiation and bone formation in mice. Mechanistically, proline is primarily incorporated into nascent protein with little metabolism observed. Collectively, these data highlight a requirement for proline in fulfilling the unique biosynthetic requirements that arise during osteoblast differentiation and bone formation.

Data availability

All data generated or analyzed during this study are included in this submission and the supporting files. Source data files are included for all western blot images and excel spreadsheets are included for the RNAseq and metabolic tracing experiments in figures 1 and 2.

Article and author information

Author details

  1. Leyao Shen

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yilin Yu

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yunji Zhou

    Department of Biostatistics and Bioinformatics, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shondra M Pruett-Miller

    Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3793-585X
  5. Guo-Fang Zhang

    Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Courtney M Karner

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    courtney.karner@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0387-4486

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR071967)

  • Courtney M Karner

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR076325)

  • Courtney M Karner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse procedures were approved by the Animal Studies Committees at Duke University first and then the University of Texas Southwestern Medical Center at Dallas (Animal Protocol 2020-102999).

Copyright

© 2022, Shen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,943
    views
  • 291
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leyao Shen
  2. Yilin Yu
  3. Yunji Zhou
  4. Shondra M Pruett-Miller
  5. Guo-Fang Zhang
  6. Courtney M Karner
(2022)
SLC38A2 provides proline to fulfil unique synthetic demands arising during osteoblast differentiation and bone formation
eLife 11:e76963.
https://doi.org/10.7554/eLife.76963

Share this article

https://doi.org/10.7554/eLife.76963

Further reading

    1. Cell Biology
    Roberto Notario Manzano, Thibault Chaze ... Christel Brou
    Research Article

    Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.

    1. Cell Biology
    Ming Zhang, Guangyi Du ... Wei Chen
    Research Article

    Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.