Uncovering natural variation in root system architecture and growth dynamics using a robotics-assisted phenomics platform

  1. Therese LaRue
  2. Heike Lindner
  3. Ankit Srinivas
  4. Moises Exposito-Alonso
  5. Guillaume Lobet
  6. José R Dinneny  Is a corresponding author
  1. Stanford University, United States
  2. Carnegie Institution for Science, United States
  3. Forschungszentrum Jülich, Germany
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/76968/elife-76968-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Therese LaRue
  2. Heike Lindner
  3. Ankit Srinivas
  4. Moises Exposito-Alonso
  5. Guillaume Lobet
  6. José R Dinneny
(2022)
Uncovering natural variation in root system architecture and growth dynamics using a robotics-assisted phenomics platform
eLife 11:e76968.
https://doi.org/10.7554/eLife.76968