Uncovering natural variation in root system architecture and growth dynamics using a robotics-assisted phenomics platform
Abstract
The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental to determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al. 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions' respective origins.
Data availability
GLORIAv2 is available through Zenodo, DOI: https://doi.org/10.5281/zenodo.5574925Image analysis pipelines and scripts are available through Zenodo, DOI: https://doi.org/10.5281/zenodo.5708430RShiny App for exploring root system architecture of accessions is available through Zenodo, DOI: https://doi.org/10.5281/zenodo.5708422Imaging data and images are available through Zenodo, DOI: https://doi.org/10.5281/zenodo.5709009General code for software operating robotics available: GitHub: https://github.com/rhizolab/rhizo-serverRhizotron laser cutting files are available through Zenodo, DOI: https://doi.org/10.5281/zenodo.6694558)Previously published datasets used: WORLCLIM2: Fick SE, Hijmans RJ, 2017, https://worldclim.org/, https://doi.org/10.1002/joc.5086
Article and author information
Author details
Funding
U.S. Department of Energy (DE-SC0008769)
- José R Dinneny
U.S. Department of Energy (DE-SC0018277)
- José R Dinneny
National Institutes of Health (T32GM007276)
- Therese LaRue
Deutsche Forschungsgemeinschaft (LI 2776/1-1)
- Heike Lindner
National Institutes of Health (1DP5OD029506-01)
- Moises Exposito-Alonso
U.S. Department of Energy (DE-SC0021286)
- Moises Exposito-Alonso
Deutsche Forschungsgemeinschaft (EXC-2070 - 390732324)
- Guillaume Lobet
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, LaRue et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,439
- views
-
- 483
- downloads
-
- 12
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
- Plant Biology
Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.
-
- Cell Biology
- Plant Biology
Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.