An archaea-specific c-type cytochrome maturation machinery is crucial for methanogenesis in Methanosarcina acetivorans

  1. Dinesh Gupta
  2. Katie E Shalvarjian
  3. Dipti D Nayak  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

C-type cytochromes (cyt c) are proteins that undergo post-translational modification to covalently bind heme, which allows them to facilitate redox reactions in electron transport chains across all domains of life. Genomic evidence suggests that cyt c are involved in electron transfer processes among the Archaea, especially in members that produce or consume the potent greenhouse gas methane. However, neither the maturation machinery for cyt c in Archaea nor their role in methane metabolism has ever been functionally characterized. Here, we have used CRISPR-Cas9 genome editing tools to map a distinct pathway for cyt c biogenesis in the model methanogenic archaeon Methanosarcina acetivorans, and have also identified substrate-specific functional roles for cyt c during methanogenesis. Although the cyt c maturation machinery from M. acetivorans is universally conserved in the Archaea, our evolutionary analyses indicate that different clades of Archaea acquired this machinery through multiple independent horizontal gene transfer events from different groups of Bacteria. Overall, we demonstrate the convergent evolution of a novel Archaea-specific cyt c maturation machinery and its physiological role during methanogenesis, a process which contributes substantially to global methane emissions

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Sequencing data have been deposited in the NCBI SRA (Sequence Read Archive) under bioproject number PRJNA800036. Source data files for Figure1b, Figure 2c, Figure 3d, Figure 4c and Figure 3- Figure Supplement 1, Figure 4 - Figure Supplement 1 and 2, are provided.

The following data sets were generated

Article and author information

Author details

  1. Dinesh Gupta

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9108-9669
  2. Katie E Shalvarjian

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dipti D Nayak

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    dnayak@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3449-3419

Funding

Gordon and Betty Moore Foundation (GBMF#9324)

  • Dipti D Nayak

Gordon and Betty Moore Foundation (GBMF#9324)

  • Dinesh Gupta

Simons Foundation (imons Early Career Investigator in Marine Microbial Ecology and Evolution Award (822981))

  • Dipti D Nayak

Simons Foundation (imons Early Career Investigator in Marine Microbial Ecology and Evolution Award (822981))

  • Katie E Shalvarjian

David and Lucile Packard Foundation (Packard Fellowships for Science and Engineering)

  • Dipti D Nayak

Searle Scholars Program (Searle Scholars Program)

  • Dipti D Nayak

Arnold and Mabel Beckman Foundation (Beckman Young Investigator Program)

  • Dipti D Nayak

Shurl and Kay Curci Foundation

  • Dipti D Nayak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,037
    views
  • 251
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dinesh Gupta
  2. Katie E Shalvarjian
  3. Dipti D Nayak
(2022)
An archaea-specific c-type cytochrome maturation machinery is crucial for methanogenesis in Methanosarcina acetivorans
eLife 11:e76970.
https://doi.org/10.7554/eLife.76970

Share this article

https://doi.org/10.7554/eLife.76970

Further reading

    1. Microbiology and Infectious Disease
    Li Zhang, Fen Hu ... Hang Yang
    Research Article

    Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.