An archaea-specific c-type cytochrome maturation machinery is crucial for methanogenesis in Methanosarcina acetivorans

  1. Dinesh Gupta
  2. Katie E Shalvarjian
  3. Dipti D Nayak  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

C-type cytochromes (cyt c) are proteins that undergo post-translational modification to covalently bind heme, which allows them to facilitate redox reactions in electron transport chains across all domains of life. Genomic evidence suggests that cyt c are involved in electron transfer processes among the Archaea, especially in members that produce or consume the potent greenhouse gas methane. However, neither the maturation machinery for cyt c in Archaea nor their role in methane metabolism has ever been functionally characterized. Here, we have used CRISPR-Cas9 genome editing tools to map a distinct pathway for cyt c biogenesis in the model methanogenic archaeon Methanosarcina acetivorans, and have also identified substrate-specific functional roles for cyt c during methanogenesis. Although the cyt c maturation machinery from M. acetivorans is universally conserved in the Archaea, our evolutionary analyses indicate that different clades of Archaea acquired this machinery through multiple independent horizontal gene transfer events from different groups of Bacteria. Overall, we demonstrate the convergent evolution of a novel Archaea-specific cyt c maturation machinery and its physiological role during methanogenesis, a process which contributes substantially to global methane emissions

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Sequencing data have been deposited in the NCBI SRA (Sequence Read Archive) under bioproject number PRJNA800036. Source data files for Figure1b, Figure 2c, Figure 3d, Figure 4c and Figure 3- Figure Supplement 1, Figure 4 - Figure Supplement 1 and 2, are provided.

The following data sets were generated

Article and author information

Author details

  1. Dinesh Gupta

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9108-9669
  2. Katie E Shalvarjian

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dipti D Nayak

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    dnayak@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3449-3419

Funding

Gordon and Betty Moore Foundation (GBMF#9324)

  • Dipti D Nayak

Gordon and Betty Moore Foundation (GBMF#9324)

  • Dinesh Gupta

Simons Foundation (imons Early Career Investigator in Marine Microbial Ecology and Evolution Award (822981))

  • Dipti D Nayak

Simons Foundation (imons Early Career Investigator in Marine Microbial Ecology and Evolution Award (822981))

  • Katie E Shalvarjian

David and Lucile Packard Foundation (Packard Fellowships for Science and Engineering)

  • Dipti D Nayak

Searle Scholars Program (Searle Scholars Program)

  • Dipti D Nayak

Arnold and Mabel Beckman Foundation (Beckman Young Investigator Program)

  • Dipti D Nayak

Shurl and Kay Curci Foundation

  • Dipti D Nayak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sonja V Albers, University of Freiburg, Germany

Version history

  1. Received: January 11, 2022
  2. Preprint posted: January 26, 2022 (view preprint)
  3. Accepted: April 4, 2022
  4. Accepted Manuscript published: April 5, 2022 (version 1)
  5. Version of Record published: May 9, 2022 (version 2)

Copyright

© 2022, Gupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,777
    views
  • 227
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dinesh Gupta
  2. Katie E Shalvarjian
  3. Dipti D Nayak
(2022)
An archaea-specific c-type cytochrome maturation machinery is crucial for methanogenesis in Methanosarcina acetivorans
eLife 11:e76970.
https://doi.org/10.7554/eLife.76970

Share this article

https://doi.org/10.7554/eLife.76970

Further reading

    1. Microbiology and Infectious Disease
    Moagi Tube Shaku, Peter K Um ... Bavesh D Kana
    Research Article

    Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.