Signal denoising through topographic modularity of neural circuits

  1. Barna Zajzon  Is a corresponding author
  2. David Dahmen
  3. Abigail Morrison
  4. Renato Duarte
  1. Forschungszentrum Jülich, Germany
  2. Radboud University Nijmegen, Netherlands

Abstract

Information from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally-relevant operating regimes, and provide an in-depth theoretical analysis unravelling the dynamical principles underlying the mechanism.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code can be found at https://doi.org/10.5281/zenodo.6326496.

Article and author information

Author details

  1. Barna Zajzon

    Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jülich, Jülich, Germany
    For correspondence
    b.zajzon@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3458-103X
  2. David Dahmen

    Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7664-916X
  3. Abigail Morrison

    Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6933-797X
  4. Renato Duarte

    Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6099-667X

Funding

Initiative and Networking Fund of the Helmholtz Association

  • Barna Zajzon
  • Abigail Morrison
  • Renato Duarte

Helmholtz Portfolio theme Supercomputing and Modeling for the Human Brain

  • Barna Zajzon
  • Abigail Morrison
  • Renato Duarte

Excellence Initiative of the German federal and state governments (G:(DE-82)EXS-SF-neuroIC002)

  • Barna Zajzon
  • Abigail Morrison
  • Renato Duarte

Helmholtz Association (VH-NG-1028)

  • David Dahmen

European Commission HBP (945539)

  • David Dahmen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Zajzon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 860
    views
  • 164
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Barna Zajzon
  2. David Dahmen
  3. Abigail Morrison
  4. Renato Duarte
(2023)
Signal denoising through topographic modularity of neural circuits
eLife 12:e77009.
https://doi.org/10.7554/eLife.77009

Share this article

https://doi.org/10.7554/eLife.77009

Further reading

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.