The role of higher order thalamus during learning and correct performance in goal-directed behavior

  1. Danilo La Terra
  2. Marius Rosier
  3. Ann-Sofie Bjerre
  4. Rei Masuda
  5. Tomás J J. Ryan
  6. Lucy Maree Palmer  Is a corresponding author
  1. University of Melbourne, Australia
  2. Trinity College Dublin, Ireland

Abstract

The thalamus is a gateway to the cortex. Cortical encoding of complex behavior can therefore only be understood by considering the thalamic processing of sensory and internally-generated information. Here, we use two-photon Ca2+ imaging and optogenetics to investigate the role of axonal projections from the posteromedial nucleus of the thalamus (POm) to the forepaw area of the mouse primary somatosensory cortex (forepaw S1). By recording the activity of POm axonal projections within forepaw S1 during expert and chance performance in two tactile goal-directed tasks, we demonstrate that POm axons increase activity in the response and, to a lesser extent, reward epochs specifically during correct HIT performance. When performing at chance level during learning of a new behavior, POm axonal activity was decreased to naïve rates and did not correlate with task performance. However, once evoked, the Ca2+ transients were larger than during expert performance, suggesting POm input to S1 differentially encodes chance and expert performance. Furthermore, the POm influences goal-directed behavior, as photo-inactivation of archaerhodopsin-expressing neurons in the POm decreased the learning rate and overall success in the behavioral task. Taken together, these findings expand the known roles of the higher-thalamic nuclei, illustrating the POm encodes and influences correct action during learning and performance in a sensory-based goal-directed behavior.

Data availability

The source code for the behavioral system can be found online at https://github.com/palmerlab/behaviour_box, as well as additional documentation at https://palmerlab.github.io. Calcium imaging data is available on Dryad doi:10.5061/dryad.1rn8pk0wb.

The following data sets were generated

Article and author information

Author details

  1. Danilo La Terra

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Marius Rosier

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Ann-Sofie Bjerre

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Rei Masuda

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Tomás J J. Ryan

    School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  6. Lucy Maree Palmer

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    For correspondence
    lucy.palmer@florey.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3676-657X

Funding

National Health and Medical Research Council (APP1086082)

  • Lucy Maree Palmer

National Health and Medical Research Council (APP1063533)

  • Lucy Maree Palmer

National Health and Medical Research Council (APP1085708)

  • Lucy Maree Palmer

Australian Respiratory Council (DP160103047)

  • Lucy Maree Palmer

Sylvia and Charles Viertel Charitable Foundation

  • Lucy Maree Palmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Florey Institute of Neuroscience and Mental Health Animal Care and Ethics Committee and followed the guidelines of the Australian Code of Practice for the Care and Use of Animals for Scientific Purpose

Reviewing Editor

  1. Ishmail Abdus-Saboor, Columbia University, United States

Version history

  1. Preprint posted: July 6, 2020 (view preprint)
  2. Received: January 18, 2022
  3. Accepted: March 2, 2022
  4. Accepted Manuscript published: March 8, 2022 (version 1)
  5. Accepted Manuscript updated: March 9, 2022 (version 2)
  6. Version of Record published: March 21, 2022 (version 3)

Copyright

© 2022, La Terra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,794
    Page views
  • 434
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Danilo La Terra
  2. Marius Rosier
  3. Ann-Sofie Bjerre
  4. Rei Masuda
  5. Tomás J J. Ryan
  6. Lucy Maree Palmer
(2022)
The role of higher order thalamus during learning and correct performance in goal-directed behavior
eLife 11:e77177.
https://doi.org/10.7554/eLife.77177

Share this article

https://doi.org/10.7554/eLife.77177

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Tony Zhang, Matthew Rosenberg ... Markus Meister
    Research Article

    An animal entering a new environment typically faces three challenges: explore the space for resources, memorize their locations, and navigate towards those targets as needed. Here we propose a neural algorithm that can solve all these problems and operates reliably in diverse and complex environments. At its core, the mechanism makes use of a behavioral module common to all motile animals, namely the ability to follow an odor to its source. We show how the brain can learn to generate internal “virtual odors” that guide the animal to any location of interest. This endotaxis algorithm can be implemented with a simple 3-layer neural circuit using only biologically realistic structures and learning rules. Several neural components of this scheme are found in brains from insects to humans. Nature may have evolved a general mechanism for search and navigation on the ancient backbone of chemotaxis.

    1. Neuroscience
    Frances Skinner
    Insight

    Automatic leveraging of information in a hippocampal neuron database to generate mathematical models should help foster interactions between experimental and computational neuroscientists.