The role of higher order thalamus during learning and correct performance in goal-directed behavior

  1. Danilo La Terra
  2. Marius Rosier
  3. Ann-Sofie Bjerre
  4. Rei Masuda
  5. Tomás J Ryan
  6. Lucy Maree Palmer  Is a corresponding author
  1. University of Melbourne, Australia
  2. Trinity College Dublin, Ireland

Abstract

The thalamus is a gateway to the cortex. Cortical encoding of complex behavior can therefore only be understood by considering the thalamic processing of sensory and internally-generated information. Here, we use two-photon Ca2+ imaging and optogenetics to investigate the role of axonal projections from the posteromedial nucleus of the thalamus (POm) to the forepaw area of the mouse primary somatosensory cortex (forepaw S1). By recording the activity of POm axonal projections within forepaw S1 during expert and chance performance in two tactile goal-directed tasks, we demonstrate that POm axons increase activity in the response and, to a lesser extent, reward epochs specifically during correct HIT performance. When performing at chance level during learning of a new behavior, POm axonal activity was decreased to naïve rates and did not correlate with task performance. However, once evoked, the Ca2+ transients were larger than during expert performance, suggesting POm input to S1 differentially encodes chance and expert performance. Furthermore, the POm influences goal-directed behavior, as photo-inactivation of archaerhodopsin-expressing neurons in the POm decreased the learning rate and overall success in the behavioral task. Taken together, these findings expand the known roles of the higher-thalamic nuclei, illustrating the POm encodes and influences correct action during learning and performance in a sensory-based goal-directed behavior.

Data availability

The source code for the behavioral system can be found online at https://github.com/palmerlab/behaviour_box, as well as additional documentation at https://palmerlab.github.io. Calcium imaging data is available on Dryad doi:10.5061/dryad.1rn8pk0wb.

The following data sets were generated

Article and author information

Author details

  1. Danilo La Terra

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Marius Rosier

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Ann-Sofie Bjerre

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Rei Masuda

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Tomás J Ryan

    Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  6. Lucy Maree Palmer

    Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
    For correspondence
    lucy.palmer@florey.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3676-657X

Funding

National Health and Medical Research Council (APP1086082)

  • Lucy Maree Palmer

National Health and Medical Research Council (APP1063533)

  • Lucy Maree Palmer

National Health and Medical Research Council (APP1085708)

  • Lucy Maree Palmer

Australian Respiratory Council (DP160103047)

  • Lucy Maree Palmer

Sylvia and Charles Viertel Charitable Foundation

  • Lucy Maree Palmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Florey Institute of Neuroscience and Mental Health Animal Care and Ethics Committee and followed the guidelines of the Australian Code of Practice for the Care and Use of Animals for Scientific Purpose

Copyright

© 2022, La Terra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,474
    views
  • 485
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Danilo La Terra
  2. Marius Rosier
  3. Ann-Sofie Bjerre
  4. Rei Masuda
  5. Tomás J Ryan
  6. Lucy Maree Palmer
(2022)
The role of higher order thalamus during learning and correct performance in goal-directed behavior
eLife 11:e77177.
https://doi.org/10.7554/eLife.77177

Share this article

https://doi.org/10.7554/eLife.77177

Further reading

    1. Neuroscience
    Cameron T Ellis, Tristan S Yates ... Nicholas Turk-Browne
    Research Article

    Studying infant minds with movies is a promising way to increase engagement relative to traditional tasks. However, the spatial specificity and functional significance of movie-evoked activity in infants remains unclear. Here, we investigated what movies can reveal about the organization of the infant visual system. We collected fMRI data from 15 awake infants and toddlers aged 5–23 months who attentively watched a movie. The activity evoked by the movie reflected the functional profile of visual areas. Namely, homotopic areas from the two hemispheres responded similarly to the movie, whereas distinct areas responded dissimilarly, especially across dorsal and ventral visual cortex. Moreover, visual maps that typically require time-intensive and complicated retinotopic mapping could be predicted, albeit imprecisely, from movie-evoked activity in both data-driven analyses (i.e. independent component analysis) at the individual level and by using functional alignment into a common low-dimensional embedding to generalize across participants. These results suggest that the infant visual system is already structured to process dynamic, naturalistic information and that fine-grained cortical organization can be discovered from movie data.

    1. Neuroscience
    Gaqi Tu, Peiying Wen ... Kaori Takehara-Nishiuchi
    Research Article

    Outcomes can vary even when choices are repeated. Such ambiguity necessitates adjusting how much to learn from each outcome by tracking its variability. The medial prefrontal cortex (mPFC) has been reported to signal the expected outcome and its discrepancy from the actual outcome (prediction error), two variables essential for controlling the learning rate. However, the source of signals that shape these coding properties remains unknown. Here, we investigated the contribution of cholinergic projections from the basal forebrain because they carry precisely timed signals about outcomes. One-photon calcium imaging revealed that as mice learned different probabilities of threat occurrence on two paths, some mPFC cells responded to threats on one of the paths, while other cells gained responses to threat omission. These threat- and omission-evoked responses were scaled to the unexpectedness of outcomes, some exhibiting a reversal in response direction when encountering surprising threats as opposed to surprising omissions. This selectivity for signed prediction errors was enhanced by optogenetic stimulation of local cholinergic terminals during threats. The enhanced threat-evoked cholinergic signals also made mice erroneously abandon the correct choice after a single threat that violated expectations, thereby decoupling their path choice from the history of threat occurrence on each path. Thus, acetylcholine modulates the encoding of surprising outcomes in the mPFC to control how much they dictate future decisions.