Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections

  1. Stefano G Giulieri
  2. Romain Guérillot
  3. Sebastian Duchene
  4. Abderrahman Hachani
  5. Diane Daniel
  6. Torsten Seemann
  7. Joshua S Davis
  8. Steven YC Tong
  9. Bernadette C Young
  10. Daniel J Wilson
  11. Timothy P Stinear
  12. Benjamin P Howden  Is a corresponding author
  1. University of Melbourne, Australia
  2. John Hunter Hospital, Australia
  3. University of Oxford, United Kingdom

Abstract

During severe infections, Staphylococcus aureus moves from its colonising sites to blood and tissues, and is exposed to new selective pressures, thus potentially driving adaptive evolution. Previous studies have shown the key role of the agr locus in S. aureus pathoadaptation, however a more comprehensive characterisation of genetic signatures of bacterial adaptation may enable prediction of clinical outcomes and reveal new targets for treatment and prevention of these infections. Here, we measured adaptation using within-host evolution analysis of 2,590 S. aureus genomes from 396 independent episodes of infection. By capturing a comprehensive repertoire of single-nucleotide and structural genome variations, we found evidence of a distinctive evolutionary pattern within the infecting populations compared to colonising bacteria. These invasive strains had up to 20-fold enrichments for genome degradation signatures and displayed significantly convergent mutations in a distinctive set of genes, linked to antibiotic response and pathogenesis. In addition to agr-mediated adaptation we identified non-canonical, genome-wide significant loci including sucA-sucB and stp1. The prevalence of adaptive changes increased with infection extent, emphasising the clinical significance of these signatures. These findings provide a high-resolution picture of the molecular changes when S. aureus transitions from colonisation to severe infection and may inform correlation of infection outcomes with adaptation signatures.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file 1-6.The code to call, filter and annotated within-host variants and to perform the enrichment analysis is available on github at https://github.com/stefanogg/staph_adaptation_paper

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Stefano G Giulieri

    Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Romain Guérillot

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Sebastian Duchene

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Abderrahman Hachani

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8032-2154
  5. Diane Daniel

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Torsten Seemann

    Microbiological Diagnostic Unit, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Joshua S Davis

    Department of Infectious Diseases, John Hunter Hospital, Newcastle, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven YC Tong

    Victorian Infectious Diseases Service, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1368-8356
  9. Bernadette C Young

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6071-6770
  10. Daniel J Wilson

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0940-3311
  11. Timothy P Stinear

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Benjamin P Howden

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    For correspondence
    bhowden@unimelb.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0237-1473

Funding

National Health and Medical Research Council

  • Timothy P Stinear

National Health and Medical Research Council

  • Benjamin P Howden

The University of Melbourne

  • Stefano G Giulieri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethics approval was obtained at each partecipating site to the CAMERA2 trial and written informed onsent was obtained from each participant or surrogate decision maker.

Copyright

© 2022, Giulieri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,799
    views
  • 597
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.77195

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.

    1. Genetics and Genomics
    Sophie Debaenst, Tamara Jarayseh ... Andy Willaert
    Research Article

    Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes. Six genes linked to severe recessive osteogenesis imperfecta (OI) and four associated with bone mineral density (BMD) from genome-wide association studies were analyzed using CRISPR/Cas9-based crispant screening in F0 mosaic founder zebrafish. Next-generation sequencing confirmed high indel efficiency (mean 88%), mimicking stable knock-out models. Skeletal phenotyping at 7, 14, and 90 days post-fertilization (dpf) using microscopy, Alizarin Red S staining, and microCT was performed. Larval crispants showed variable osteoblast and mineralization phenotypes, while adult crispants displayed consistent skeletal defects, including malformed neural and haemal arches, vertebral fractures and fusions, and altered bone volume and density. In addition, aldh7a1 and mbtps2 crispants experienced increased mortality due to severe skeletal deformities. RT-qPCR revealed differential expression of osteogenic markers bglap and col1a1a, highlighting their biomarker potential. Our results establish zebrafish crispant screening as a robust tool for FBD gene validation, combining skeletal and molecular analyses across developmental stages to uncover novel insights into gene functions in bone biology.