Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections
Abstract
During severe infections, Staphylococcus aureus moves from its colonising sites to blood and tissues, and is exposed to new selective pressures, thus potentially driving adaptive evolution. Previous studies have shown the key role of the agr locus in S. aureus pathoadaptation, however a more comprehensive characterisation of genetic signatures of bacterial adaptation may enable prediction of clinical outcomes and reveal new targets for treatment and prevention of these infections. Here, we measured adaptation using within-host evolution analysis of 2,590 S. aureus genomes from 396 independent episodes of infection. By capturing a comprehensive repertoire of single-nucleotide and structural genome variations, we found evidence of a distinctive evolutionary pattern within the infecting populations compared to colonising bacteria. These invasive strains had up to 20-fold enrichments for genome degradation signatures and displayed significantly convergent mutations in a distinctive set of genes, linked to antibiotic response and pathogenesis. In addition to agr-mediated adaptation we identified non-canonical, genome-wide significant loci including sucA-sucB and stp1. The prevalence of adaptive changes increased with infection extent, emphasising the clinical significance of these signatures. These findings provide a high-resolution picture of the molecular changes when S. aureus transitions from colonisation to severe infection and may inform correlation of infection outcomes with adaptation signatures.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file 1-6.The code to call, filter and annotated within-host variants and to perform the enrichment analysis is available on github at https://github.com/stefanogg/staph_adaptation_paper
-
Large tandem chromosome duplications facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureusPublicly available at NCBI BioProject (accession no. PRJEB9193).
-
Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKRPublicly available at NCBI Sequencing Read Archive (SRA) (accession no. SRA027352).
-
Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKRPublicly available at NCBI BioProject (accession no. PRJNA29567).
-
Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKRPublicly available at NCBI BioProject (accession no. PRJNA29569).
-
Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease.Publicly available at NCBI BioProject (accession no. PRJEB2862).
-
Within-host evolution of Staphylococcus aureus during asymptomatic carriage.Publicly available at NCBI BioProject (accession no.PRJEB2881).
-
Development of oxacillin resistance in a patient with recurrent Staphylococcus aureus bacteremia.Publicly available at NCBI BioProject (accession no.PRJNA248678).
-
Population Genomics of Reduced Vancomycin Susceptibility in Staphylococcus aureus.Publicly available at NCBI BioProject (accession no.PRJNA259799).
-
Adaptive processes of Staphylococcus aureus isolates during the progression from acute to chronic bone and joint infections in patients.Publicly available at NCBI BioProject (accession no.PRJNA298748).
-
Severe infections emerge from commensal bacteria by adaptive evolution.Publicly available at NCBI BioProject (accession no.PRJEB2862).
-
Emergence and Within-Host Genetic Evolution of Methicillin-Resistant Staphylococcus aureus Resistant to Linezolid in a Cystic Fibrosis Patient.Publicly available at NCBI BioProject (accession no.PRJNA434495).
-
In vivo competition and horizontal gene transfer among distinct Staphylococcus aureus lineages as major drivers for adaptational changes during long-term persistence in humans.Publicly available at NCBI BioProject (accession no.PRJEB22600).
-
Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection.Publicly available at NCBI BioProject (accession no.PRJNA393749).
-
Genomic exploration of sequential clinical isolates reveals a distinctive molecular signature of persistent Staphylococcus aureus bacteraemia.Publicly available at NCBI BioProject (accession no.PRJEB27932).
-
Genomic evolution of Staphylococcus aureus isolates colonizing the nares and progressing to bacteremia.Publicly available at NCBI BioProject (accession no.PRJNA414752).
-
Mutation of Agr Is Associated with the Adaptation of Staphylococcus aureus to the Host during Chronic Osteomyelitis.Publicly available at NCBI BioProject (accession no.PRJNA414566).
-
The Microevolution and Epidemiology of Staphylococcus aureus Colonization during Atopic Eczema Disease Flare.Publicly available at NCBI BioProject (accession no.PRJEB20148).
-
Chronic Staphylococcus aureus Lung Infection Correlates With Proteogenomic and Metabolic Adaptations Leading to an Increased Intracellular Persistence.Publicly available at NCBI BioProject (accession no.PRJNA446073).
-
Staphylococcus aureus Small Colony Variants (SCVs): News From a Chronic Prosthetic Joint Infection.Publicly available at NCBI BioProject (accession no.PRJNA497214).
-
IS256-Mediated Overexpression of the WalKR Two-Component System Regulon Contributes to Reduced Vancomycin Susceptibility in a Staphylococcus aureus Clinical Isolate.Publicly available at NCBI BioProject (accession no.PRJDB8056).
-
Long-Term Intrahost Evolution of Methicillin Resistant Staphylococcus aureus Among Cystic Fibrosis Patients With Respiratory Carriage.Publicly available at NCBI BioProject (accession no.PRJNA527261).
-
Genomic characterization of inpatient evolution of MRSA resistant to daptomycin, vancomycin and ceftaroline.Publicly available at NCBI BioProject (accession no.PRJNA488707).
-
In-Host Evolution of Daptomycin Resistance and Heteroresistance in Methicillin-Resistant Staphylococcus aureus Strains From Three Endocarditis Patients.Publicly available at NCBI BioProject (accession no.PRJNA577181).
-
Distinct Subpopulations of Intravalvular Methicillin-Resistant Staphylococcus aureus with Variable Susceptibility to Daptomycin in Tricuspid Valve Endocarditis.Publicly available at NCBI BioProject (accession no.PRJNA544229).
-
Safety of bacteriophage therapy in severe Staphylococcus aureus infection.Publicly available at NCBI BioProject (accession no.PRJNA541589).
Article and author information
Author details
Funding
National Health and Medical Research Council
- Timothy P Stinear
National Health and Medical Research Council
- Benjamin P Howden
The University of Melbourne
- Stefano G Giulieri
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Ethics approval was obtained at each partecipating site to the CAMERA2 trial and written informed onsent was obtained from each participant or surrogate decision maker.
Copyright
© 2022, Giulieri et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,988
- views
-
- 615
- downloads
-
- 33
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Neuroscience
Thermal nociception in Caenorhabditis elegans is regulated by the Ca²+/calmodulin-dependent protein kinase CMK-1, but its downstream effectors have remained unclear. Here, we combined in vitro kinase assays with mass-spectrometry-based phosphoproteomics to identify hundreds of CMK-1 substrates, including the calcineurin A subunit TAX-6, phosphorylated within its conserved regulatory domain. Genetic and pharmacological analyses reveal multiple antagonistic interactions between CMK-1 and calcineurin signaling in modulating both naive thermal responsiveness and adaptation to repeated noxious stimuli. Cell-specific manipulations indicate that CMK-1 acts in AFD and ASER thermo-sensory neurons, while TAX-6 functions in FLP thermo-sensory neurons and downstream interneurons. Since CMK-1 and TAX-6 act in distinct cell types, the phosphorylation observed in vitro might not directly underlie the behavioral phenotype. Instead, the opposing effects seem to arise from their distributed roles within the sensory circuit. Overall, our study provides (1) a resource of candidate CMK-1 targets for further dissecting CaM kinase signaling and (2) evidence of a previously unrecognized, circuit-level antagonism between CMK-1 and calcineurin pathways. These findings highlight a complex interplay of signaling modules that modulate thermal nociception and adaptation, offering new insights into potentially conserved mechanisms that shape nociceptive plasticity and pain (de)sensitization in more complex nervous systems.
-
- Genetics and Genomics
Isocitrate dehydrogenase 1 (IDH1) is the key enzyme that can modulate cellular metabolism, epigenetic modification, and redox homeostasis. Gain-of-function mutations and decreased expression of IDH1 have been demonstrated to be associated with pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, the function and mechanism of IDH1 in human erythropoiesis still remains unclear. Here, utilizing the human erythropoiesis system, we present an evidence of IDH1-mediated chromatin state reprogramming besides its well-characterized metabolism effects. We found that knockdown IDH1 induced chromatin reorganization and subsequently led to abnormalities biological events in erythroid precursors, which could not be rescued by addition of reactive oxygen species (ROS) scavengers or supplementation of α-ketoglutarate (α-KG).We further revealed that knockdown IDH1 induces genome-wide changes in distribution and intensity of multiple histone marks, among which H3K79me3 was identified as a critical factor in chromatin state reprogramming. Integrated analysis of ChIP-seq, ATAC-seq, and RNA-seq recognized that SIRT1 was the key gene affected by IDH1 deficiency. Thus, our current work provided novel insights for further clarifying fundamental biological function of IDH1 which has substantial implications for an in-depth understanding of pathogenesis of diseases with IDH1 dysfunction and accordingly development of therapeutic strategies.