Transition to siblinghood causes a substantial and long-lasting increase in urinary cortisol levels in wild bonobos

  1. Verena Behringer  Is a corresponding author
  2. Andreas Berghänel
  3. Tobias Deschner
  4. Sean M Lee
  5. Barbara Fruth
  6. Gottfried Hohmann
  1. Leibniz Institute for Primate Research, Germany
  2. University of Veterinary Medicine Vienna, Germany
  3. University of Osnabrück, Germany
  4. George Washington University, United States
  5. Max Planck Institute of Animal Behavior, Germany
  6. Max Planck Institute for Evolutionary Anthropology, Germany

Abstract

In animals with slow ontogeny and long-term maternal investment, immatures are likely to experience the birth of a younger sibling before reaching maturity. In these species, the birth of a sibling marks a major event in an offspring's early life, as the older siblings experience a decrease in maternal support. The transition to siblinghood (TTS) is often considered to be stressful for the older offspring, but physiological evidence is lacking. To explore the TTS in wild bonobos, we investigated physiological changes in urinary cortisol (stress response), neopterin (cell-mediated immunity), and total triiodothyronine (T3, metabolic rate), as well as changes in behaviors that reflect the mother-offspring relationship. Following a sibling's birth, urinary cortisol levels of the older offspring increased fivefold, independent of their age, and remained elevated for seven months. The cortisol level increase was associated with declining neopterin levels, however T3 levels and behavioral measures did not change. Our results indicate that the TTS is accompanied by elevated cortisol levels and that this change does not coincide with nutritional weaning and attainment of physical independence. Our results suggest that bonobos and humans experience TTS in similar ways and that this developmental event may have emerged in the last common ancestor.

Data availability

Source data for statistics and figures in the paper is permanently stored at GRO Behringer, 2021, "Replication Data for: Transition to siblinghood", https://doi.org/10.25625/O1OD2I.

Article and author information

Author details

  1. Verena Behringer

    Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
    For correspondence
    VBehringer@dpz.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6338-7298
  2. Andreas Berghänel

    Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3317-3392
  3. Tobias Deschner

    Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sean M Lee

    Department of Anthropology, George Washington University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Barbara Fruth

    Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Gottfried Hohmann

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (BE 5511/4-1)

  • Verena Behringer

Max Planck Institite for Evolutionary Anthropology (open access funding)

  • Gottfried Hohmann

Max Planck institute of animal behaviour (open access funding)

  • Barbara Fruth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All samples were collected non-invasively and with permission of the Institut Congolais pour la Conservation de la Nature (ICCN).

Reviewing Editor

  1. Stacy Rosenbaum, University of Michigan, United States

Publication history

  1. Received: January 20, 2022
  2. Preprint posted: February 17, 2022 (view preprint)
  3. Accepted: August 29, 2022
  4. Accepted Manuscript published: August 30, 2022 (version 1)
  5. Version of Record published: September 20, 2022 (version 2)

Copyright

© 2022, Behringer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 719
    Page views
  • 206
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Verena Behringer
  2. Andreas Berghänel
  3. Tobias Deschner
  4. Sean M Lee
  5. Barbara Fruth
  6. Gottfried Hohmann
(2022)
Transition to siblinghood causes a substantial and long-lasting increase in urinary cortisol levels in wild bonobos
eLife 11:e77227.
https://doi.org/10.7554/eLife.77227

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Sofia N Moraes, Jordan T Becker ... Reuben S Harris
    Research Article

    Viruses have evolved diverse mechanisms to antagonize host immunity such as direct inhibition and relocalization of cellular APOBEC3B (A3B) by the ribonucleotide reductase (RNR) of Epstein-Barr virus. Here, we investigate the mechanistic conservation and evolutionary origin of this innate immune counteraction strategy. First, we find that human gamma-herpesvirus RNRs engage A3B via largely distinct surfaces. Second, we show that RNR-mediated enzymatic inhibition and relocalization of A3B depend upon binding to different regions of the catalytic domain. Third, we show that the capability of viral RNRs to antagonize A3B is conserved among gamma-herpesviruses that infect humans and Old World monkeys that encode this enzyme but absent in homologous viruses that infect New World monkeys that naturally lack the A3B gene. Finally, we reconstruct the ancestral primate A3B protein and demonstrate that it is active and similarly engaged by the RNRs from viruses that infect humans and Old World monkeys but not by the RNRs from viruses that infect New World monkeys. These results combine to indicate that the birth of A3B at a critical branchpoint in primate evolution may have been a driving force in selecting for an ancestral gamma-herpesvirus with an expanded RNR functionality through counteraction of this antiviral enzyme.

    1. Evolutionary Biology
    2. Neuroscience
    Kai R Caspar, Fabian Pallasdies ... Sabine Begall
    Research Article

    The evolution of human right-handedness has been intensively debated for decades. Manual lateralization patterns in non-human primates have the potential to elucidate evolutionary determinants of human handedness, but restricted species samples and inconsistent methodologies have so far limited comparative phylogenetic studies. By combining original data with published literature reports, we assembled data on hand preferences for standardized object manipulation in 1786 individuals from 38 species of anthropoid primates, including monkeys, apes, and humans. Based on that, we employ quantitative phylogenetic methods to test prevalent hypotheses on the roles of ecology, brain size, and tool use in primate handedness evolution. We confirm that human right-handedness represents an unparalleled extreme among anthropoids and found taxa displaying population-level handedness to be rare. Species-level direction of manual lateralization was largely uniform among non-human primates and did not strongly correlate with any of the selected biological predictors, nor with phylogeny. In contrast, we recovered highly variable patterns of hand preference strength, which show signatures of both ecology and phylogeny. In particular, terrestrial primates tend to display weaker hand preferences than arboreal species. These results challenge popular ideas on primate handedness evolution, including the postural origins hypothesis. Furthermore, they point to a potential adaptive benefit of disparate lateralization strength in primates, a measure of hand preference that has often been overlooked in the past. Finally, our data show that human lateralization patterns do not align with trends found among other anthropoids, suggesting that unique selective pressures gave rise to the unusual hand preferences of our species.