Transition to siblinghood causes a substantial and long-lasting increase in urinary cortisol levels in wild bonobos

  1. Verena Behringer  Is a corresponding author
  2. Andreas Berghänel
  3. Tobias Deschner
  4. Sean M Lee
  5. Barbara Fruth
  6. Gottfried Hohmann
  1. Leibniz Institute for Primate Research, Germany
  2. University of Veterinary Medicine Vienna, Germany
  3. University of Osnabrück, Germany
  4. George Washington University, United States
  5. Max Planck Institute of Animal Behavior, Germany
  6. Max Planck Institute for Evolutionary Anthropology, Germany

Abstract

In animals with slow ontogeny and long-term maternal investment, immatures are likely to experience the birth of a younger sibling before reaching maturity. In these species, the birth of a sibling marks a major event in an offspring's early life, as the older siblings experience a decrease in maternal support. The transition to siblinghood (TTS) is often considered to be stressful for the older offspring, but physiological evidence is lacking. To explore the TTS in wild bonobos, we investigated physiological changes in urinary cortisol (stress response), neopterin (cell-mediated immunity), and total triiodothyronine (T3, metabolic rate), as well as changes in behaviors that reflect the mother-offspring relationship. Following a sibling's birth, urinary cortisol levels of the older offspring increased fivefold, independent of their age, and remained elevated for seven months. The cortisol level increase was associated with declining neopterin levels, however T3 levels and behavioral measures did not change. Our results indicate that the TTS is accompanied by elevated cortisol levels and that this change does not coincide with nutritional weaning and attainment of physical independence. Our results suggest that bonobos and humans experience TTS in similar ways and that this developmental event may have emerged in the last common ancestor.

Data availability

Source data for statistics and figures in the paper is permanently stored at GRO Behringer, 2021, "Replication Data for: Transition to siblinghood", https://doi.org/10.25625/O1OD2I.

Article and author information

Author details

  1. Verena Behringer

    Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
    For correspondence
    VBehringer@dpz.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6338-7298
  2. Andreas Berghänel

    Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3317-3392
  3. Tobias Deschner

    Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sean M Lee

    Department of Anthropology, George Washington University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Barbara Fruth

    Max Planck Institute of Animal Behavior, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Gottfried Hohmann

    Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (BE 5511/4-1)

  • Verena Behringer

Max Planck Institite for Evolutionary Anthropology (open access funding)

  • Gottfried Hohmann

Max Planck institute of animal behaviour (open access funding)

  • Barbara Fruth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All samples were collected non-invasively and with permission of the Institut Congolais pour la Conservation de la Nature (ICCN).

Copyright

© 2022, Behringer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,249
    views
  • 276
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Verena Behringer
  2. Andreas Berghänel
  3. Tobias Deschner
  4. Sean M Lee
  5. Barbara Fruth
  6. Gottfried Hohmann
(2022)
Transition to siblinghood causes a substantial and long-lasting increase in urinary cortisol levels in wild bonobos
eLife 11:e77227.
https://doi.org/10.7554/eLife.77227

Share this article

https://doi.org/10.7554/eLife.77227

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Timothy Fuqua, Yiqiao Sun, Andreas Wagner
    Research Article

    Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called –10 and –35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 ‘promoter islands’, DNA sequences enriched with –10 and –35 boxes. We mutagenize these starting ‘parent’ sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new –10 and –35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all –10 and –35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new –10 and –35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that –10 and –35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.

    1. Evolutionary Biology
    Matthew Osmond, Graham Coop
    Research Article Updated

    Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation-by-distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here, we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60 km2/generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.