The scaffolding protein Flot2 promotes cytoneme-based transport of Wnt3 in gastric cancer

  1. Daniel Routledge
  2. Sally Rogers
  3. Yosuke Ono
  4. Lucy Brunt
  5. Valerie Meniel
  6. Giusy Tornillo
  7. Hassan Ashktorab
  8. Toby Phesse
  9. Steffen Scholpp  Is a corresponding author
  1. University of Exeter, United Kingdom
  2. Cardiff University, United Kingdom
  3. Howard University, United States

Abstract

The Wnt/β-catenin signalling pathway regulates multiple cellular processes during development and many diseases, including cell proliferation, migration, and differentiation. Despite their hydrophobic nature, Wnt proteins exert their function over long distances to induce paracrine signalling. Recent studies have identified several factors involved in Wnt secretion, however, our understanding of how Wnt ligands are transported between cells to interact with their cognate receptors is still debated. Here, we demonstrate that gastric cancer cells utilise cytonemes to transport Wnt3 intercellularly to promote proliferation and cell survival. Furthermore, we identify the membrane-bound scaffolding protein Flotillin-2 (Flot2), frequently overexpressed in gastric cancer, as a modulator of these cytonemes. Together with the Wnt co-receptor and cytoneme initiator Ror2, Flot2 determines the number and length of Wnt3 cytonemes in gastric cancer. Finally, we show that Flotillins are also necessary for Wnt8a cytonemes during zebrafish embryogenesis, suggesting a conserved mechanism for Flotillin-mediated Wnt transport on cytonemes in development and disease.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files and source files; Supporting Data files and Source Data have been provided to all figures.

Article and author information

Author details

  1. Daniel Routledge

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Sally Rogers

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Yosuke Ono

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Lucy Brunt

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Valerie Meniel

    The European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Giusy Tornillo

    The European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Hassan Ashktorab

    Department of Medicine, Howard University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Toby Phesse

    The European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9568-4916
  9. Steffen Scholpp

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    For correspondence
    s.scholpp@exeter.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4903-9657

Funding

Medical Research Council (MR/N0137941/1)

  • Daniel Routledge

Medical Research Council (MR/S007970/1)

  • Sally Rogers
  • Steffen Scholpp

Biotechnology and Biological Sciences Research Council (BB/S016295/1)

  • Yosuke Ono
  • Lucy Brunt
  • Steffen Scholpp

Medical Research Council (MR/R026424/1)

  • Valerie Meniel
  • Giusy Tornillo
  • Toby Phesse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish care and all experimental procedures were carried out in accordance with the European Communities Council Directive (2010/63/EU) and Animals Scientific Procedures Act (ASPA) 1986. Zebrafish experimental procedures were carried out under personal and project licenses granted by the UK Home Office under ASPA, and ethically approved by the Animal Welfare and Ethical Review Body at the University of Exeter.

Copyright

© 2022, Routledge et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,554
    views
  • 320
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Routledge
  2. Sally Rogers
  3. Yosuke Ono
  4. Lucy Brunt
  5. Valerie Meniel
  6. Giusy Tornillo
  7. Hassan Ashktorab
  8. Toby Phesse
  9. Steffen Scholpp
(2022)
The scaffolding protein Flot2 promotes cytoneme-based transport of Wnt3 in gastric cancer
eLife 11:e77376.
https://doi.org/10.7554/eLife.77376

Share this article

https://doi.org/10.7554/eLife.77376

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Hirokazu Kimura, Kamel Lahouel ... Nicholas Jason Roberts
    Research Article

    Interpretation of variants identified during genetic testing is a significant clinical challenge. In this study, we developed a high-throughput CDKN2A functional assay and characterized all possible human CDKN2A missense variants. We found that 17.7% of all missense variants were functionally deleterious. We also used our functional classifications to assess the performance of in silico models that predict the effect of variants, including recently reported models based on machine learning. Notably, we found that all in silico models performed similarly when compared to our functional classifications with accuracies of 39.5–85.4%. Furthermore, while we found that functionally deleterious variants were enriched within ankyrin repeats, we did not identify any residues where all missense variants were functionally deleterious. Our functional classifications are a resource to aid the interpretation of CDKN2A variants and have important implications for the application of variant interpretation guidelines, particularly the use of in silico models for clinical variant interpretation.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.