Evolutionary convergence of a neural mechanism in the cavefish lateral line system

  1. Elias T Lunsford
  2. Alexandra Paz
  3. Alex C Keene
  4. James C Liao  Is a corresponding author
  1. University of Florida, United States
  2. Florida Atlantic University, United States
  3. Texas A&M University, United States

Abstract

Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish.. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently-derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.

Data availability

Electrophysiology data generated and analysed during this study are included as a supplementary file ('Supplementary File 1').

Article and author information

Author details

  1. Elias T Lunsford

    Department of Biology, University of Florida, Saint Augustine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3713-6994
  2. Alexandra Paz

    Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alex C Keene

    Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James C Liao

    Department of Biology, University of Florida, Saint Augustine, United States
    For correspondence
    jliao@whitney.ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0181-6995

Funding

US-Israel Binational Science Foundation (SP#2018-190)

  • Alex C Keene

National Science Foundation (IOS165674)

  • Alex C Keene

National Institutes of Health (IR01GM127872)

  • Alex C Keene

National Institutes of Health (DC010809)

  • James C Liao

National Science Foundation (IOS1856237)

  • James C Liao

National Science Foundation (IOS2102891)

  • James C Liao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were handled according to protocols approved by the University of Florida or Florida Atlantic University Institutional Animal Care and Use Committee (IACUC201603267, IACUC202200000056). Animal health was assessed by monitoring blood flow throughout each experiment.

Reviewing Editor

  1. Matthieu Louis, University of California, Santa Barbara, United States

Publication history

  1. Received: January 27, 2022
  2. Preprint posted: January 28, 2022 (view preprint)
  3. Accepted: June 15, 2022
  4. Accepted Manuscript published: June 16, 2022 (version 1)
  5. Version of Record published: June 30, 2022 (version 2)

Copyright

© 2022, Lunsford et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 977
    Page views
  • 210
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elias T Lunsford
  2. Alexandra Paz
  3. Alex C Keene
  4. James C Liao
(2022)
Evolutionary convergence of a neural mechanism in the cavefish lateral line system
eLife 11:e77387.
https://doi.org/10.7554/eLife.77387

Further reading

    1. Ecology
    2. Evolutionary Biology
    Jason P Dinh, SN Patek
    Research Article Updated

    Evolutionary theory suggests that individuals should express costly traits at a magnitude that optimizes the trait bearer’s cost-benefit difference. Trait expression varies across a species because costs and benefits vary among individuals. For example, if large individuals pay lower costs than small individuals, then larger individuals should reach optimal cost-benefit differences at greater trait magnitudes. Using the cavitation-shooting weapons found in the big claws of male and female snapping shrimp, we test whether size- and sex-dependent expenditures explain scaling and sex differences in weapon size. We found that males and females from three snapping shrimp species (Alpheus heterochaelis, Alpheus angulosus, and Alpheus estuariensis) show patterns consistent with tradeoffs between weapon and abdomen size. For male A. heterochaelis, the species for which we had the greatest statistical power, smaller individuals showed steeper tradeoffs. Our extensive dataset in A. heterochaelis also included data about pairing, breeding season, and egg clutch size. Therefore, we could test for reproductive tradeoffs and benefits in this species. Female A. heterochaelis exhibited tradeoffs between weapon size and egg count, average egg volume, and total egg mass volume. For average egg volume, smaller females exhibited steeper tradeoffs. Furthermore, in males but not females, large weapons were positively correlated with the probability of being paired and the relative size of their pair mates. In conclusion, we identified size-dependent tradeoffs that could underlie reliable scaling of costly traits. Furthermore, weapons are especially beneficial to males and burdensome to females, which could explain why males have larger weapons than females.

    1. Evolutionary Biology
    Anthony V Signore, Phillip R Morrison ... Kevin L Campbell
    Research Article

    The extinct Steller's sea cow (Hydrodamalis gigas; †1768) was a whale-sized marine mammal that manifested profound morphological specializations to exploit the harsh coastal climate of the North Pacific. Yet despite first-hand accounts of their biology, little is known regarding the physiological adjustments underlying their evolution to this environment. Here, the adult-expressed hemoglobin (Hb; a2β/δ2) of this sirenian is shown to harbor a fixed amino acid replacement at an otherwise invariant position (β/δ82Lys→Asn) that alters multiple aspects of Hb function. First, our functional characterization of recombinant sirenian Hb proteins demonstrate that the Hb-O2 affinity of this sub-Arctic species was less affected by temperature than those of living (sub)tropical sea cows. This phenotype presumably safeguarded O2 delivery to cool peripheral tissues and largely arises from a reduced intrinsic temperature sensitivity of the H. gigas protein. Additional experiments on H. gigas β/δ82Asn→Lys mutant Hb further reveal this exchange renders Steller's sea cow Hb unresponsive to the potent intraerythrocytic allosteric effector 2,3-diphosphoglycerate, a radical modification that is the first documented example of this phenotype among mammals. Notably, β/δ82Lys→Asn moreover underlies the secondary evolution of a reduced blood-O2 affinity phenotype that would have promoted heightened tissue and maternal/fetal O2 delivery. This conclusion is bolstered by analyses of two Steller's sea cow prenatal Hb proteins (Hb Gower I; z2e2 and HbF; a2g2) that suggest an exclusive embryonic stage expression pattern, and reveal uncommon replacements in H. gigas HbF (g38Thr→Ile and g101Glu→Asp) that increased Hb-O2 affinity relative to dugong HbF. Finally, the β/δ82Lys→Asn replacement of the adult/fetal protein is shown to increase protein solubility, which may have elevated red blood cell Hb content within both the adult and fetal circulations and contributed to meeting the elevated metabolic (thermoregulatory) requirements and fetal growth rates associated with this species cold adaptation.