Evolutionary convergence of a neural mechanism in the cavefish lateral line system

  1. Elias T Lunsford
  2. Alexandra Paz
  3. Alex C Keene
  4. James C Liao  Is a corresponding author
  1. University of Florida, United States
  2. Florida Atlantic University, United States
  3. Texas A&M University, United States

Abstract

Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish.. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently-derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.

Data availability

Electrophysiology data generated and analysed during this study are included as a supplementary file ('Supplementary File 1').

Article and author information

Author details

  1. Elias T Lunsford

    Department of Biology, University of Florida, Saint Augustine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3713-6994
  2. Alexandra Paz

    Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alex C Keene

    Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James C Liao

    Department of Biology, University of Florida, Saint Augustine, United States
    For correspondence
    jliao@whitney.ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0181-6995

Funding

US-Israel Binational Science Foundation (SP#2018-190)

  • Alex C Keene

National Science Foundation (IOS165674)

  • Alex C Keene

National Institutes of Health (IR01GM127872)

  • Alex C Keene

National Institutes of Health (DC010809)

  • James C Liao

National Science Foundation (IOS1856237)

  • James C Liao

National Science Foundation (IOS2102891)

  • James C Liao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthieu Louis, University of California, Santa Barbara, United States

Ethics

Animal experimentation: All animals were handled according to protocols approved by the University of Florida or Florida Atlantic University Institutional Animal Care and Use Committee (IACUC201603267, IACUC202200000056). Animal health was assessed by monitoring blood flow throughout each experiment.

Version history

  1. Received: January 27, 2022
  2. Preprint posted: January 28, 2022 (view preprint)
  3. Accepted: June 15, 2022
  4. Accepted Manuscript published: June 16, 2022 (version 1)
  5. Version of Record published: June 30, 2022 (version 2)

Copyright

© 2022, Lunsford et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,206
    Page views
  • 236
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elias T Lunsford
  2. Alexandra Paz
  3. Alex C Keene
  4. James C Liao
(2022)
Evolutionary convergence of a neural mechanism in the cavefish lateral line system
eLife 11:e77387.
https://doi.org/10.7554/eLife.77387

Share this article

https://doi.org/10.7554/eLife.77387

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Jonathan E Phillips, Duojia Pan
    Research Advance

    The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Zachary Paul Billman, Stephen Bela Kovacs ... Edward A Miao
    Research Article

    Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA–D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.