Evolutionary convergence of a neural mechanism in the cavefish lateral line system

  1. Elias T Lunsford
  2. Alexandra Paz
  3. Alex C Keene
  4. James C Liao  Is a corresponding author
  1. University of Florida, United States
  2. Florida Atlantic University, United States
  3. Texas A&M University, United States

Abstract

Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish.. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently-derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.

Data availability

Electrophysiology data generated and analysed during this study are included as a supplementary file ('Supplementary File 1').

Article and author information

Author details

  1. Elias T Lunsford

    Department of Biology, University of Florida, Saint Augustine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3713-6994
  2. Alexandra Paz

    Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alex C Keene

    Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James C Liao

    Department of Biology, University of Florida, Saint Augustine, United States
    For correspondence
    jliao@whitney.ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0181-6995

Funding

US-Israel Binational Science Foundation (SP#2018-190)

  • Alex C Keene

National Science Foundation (IOS165674)

  • Alex C Keene

National Institutes of Health (IR01GM127872)

  • Alex C Keene

National Institutes of Health (DC010809)

  • James C Liao

National Science Foundation (IOS1856237)

  • James C Liao

National Science Foundation (IOS2102891)

  • James C Liao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were handled according to protocols approved by the University of Florida or Florida Atlantic University Institutional Animal Care and Use Committee (IACUC201603267, IACUC202200000056). Animal health was assessed by monitoring blood flow throughout each experiment.

Copyright

© 2022, Lunsford et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,305
    views
  • 257
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elias T Lunsford
  2. Alexandra Paz
  3. Alex C Keene
  4. James C Liao
(2022)
Evolutionary convergence of a neural mechanism in the cavefish lateral line system
eLife 11:e77387.
https://doi.org/10.7554/eLife.77387

Share this article

https://doi.org/10.7554/eLife.77387

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Hanna Tutaj, Katarzyna Tomala ... Ryszard Korona
    Research Article

    The loss of a single chromosome in a diploid organism halves the dosage of many genes and is usually accompanied by a substantial decrease in fitness. We asked whether this decrease simply reflects the joint damage caused by individual gene dosage deficiencies. We measured the fitness effects of single heterozygous gene deletions in yeast and combined them for each chromosome. This predicted a negative growth rate, that is, lethality, for multiple monosomies. However, monosomic strains remained alive and grew as if much (often most) of the damage caused by single mutations had disappeared, revealing an exceptionally large and positive epistatic component of fitness. We looked for functional explanations by analyzing the transcriptomes. There was no evidence of increased (compensatory) gene expression on the monosomic chromosomes. Nor were there signs of the cellular stress response that would be expected if monosomy led to protein destabilization and thus cytotoxicity. Instead, all monosomic strains showed extensive upregulation of genes encoding ribosomal proteins, but in an indiscriminate manner that did not correspond to their altered dosage. This response did not restore the stoichiometry required for efficient biosynthesis, which probably became growth limiting, making all other mutation-induced metabolic defects much less important. In general, the modular structure of the cell leads to an effective fragmentation of the total mutational load. Defects outside the module(s) currently defining fitness lose at least some of their relevance, producing the epiphenomenon of positive interactions between individually negative effects.

    1. Evolutionary Biology
    2. Medicine
    Rion Brattig-Correia, Joana M Almeida ... Paulo Navarro-Costa
    Tools and Resources

    Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.