Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination

  1. Lin Pan
  2. Amelia Trimarco
  3. Alice J Zhang
  4. Ko Fujimori
  5. Yoshihiro Urade
  6. Lu O Sun
  7. Carla Taveggia  Is a corresponding author
  8. Ye Zhang  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. IRCCS Ospedale San Raffaele, Italy
  3. Osaka Medical and Pharmaceutical University, Japan
  4. Daiichi University of Pharmacy, Japan
  5. The University of Texas Southwestern Medical Center, United States

Abstract

In the developing central nervous system, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes, which form myelin around axons. Oligodendrocytes and myelin are essential for the function of the central nervous system, as evidenced by the severe neurological symptoms that arise in demyelinating diseases such as multiple sclerosis and leukodystrophy. Although many cell-intrinsic mechanisms that regulate oligodendrocyte development and myelination have been reported, it remains unclear whether interactions among oligodendrocyte-lineage cells (OPCs and oligodendrocytes) affect oligodendrocyte development and myelination. Here, we show that blocking vesicle-associated membrane protein (VAMP) 1/2/3-dependent exocytosis from oligodendrocyte-lineage cells impairs oligodendrocyte development, myelination, and motor behavior in mice. Adding oligodendrocyte-lineage cell-secreted molecules to secretion-deficient OPC cultures partially restores the morphological maturation of oligodendrocytes. Moreover, we identified L-type prostaglandin D synthase as an oligodendrocyte-lineage cell-secreted protein that promotes oligodendrocyte development and myelination in vivo. These findings reveal a novel autocrine/paracrine loop model for the regulation of oligodendrocyte and myelin development.

Data availability

We deposited all RNA-seq data to the Gene Expression Omnibus under accession number GSE168569

The following data sets were generated

Article and author information

Author details

  1. Lin Pan

    Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Amelia Trimarco

    Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
    Competing interests
    No competing interests declared.
  3. Alice J Zhang

    Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Ko Fujimori

    Department of Pathobiochemistry, Osaka Medical and Pharmaceutical University, Osaka, Japan
    Competing interests
    No competing interests declared.
  5. Yoshihiro Urade

    Daiichi University of Pharmacy, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  6. Lu O Sun

    Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Carla Taveggia

    Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
    For correspondence
    taveggia.carla@hsr.it
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6531-9544
  8. Ye Zhang

    Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    yezhang@ucla.edu
    Competing interests
    Ye Zhang, consulted for Ono Pharmaceutical..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1546-5930

Funding

UCLA Brain Research Institute (Knaub Postdoctoral Fellowship)

  • Lin Pan

Friends of the Semel Institute for Neuroscience & Human Behavior (Friends scholar award)

  • Ye Zhang

National Institute of Neurological Disorders and Stroke (R00NS089780)

  • Ye Zhang

National Institute of Neurological Disorders and Stroke (R01NS109025)

  • Ye Zhang

National Institute of Aging (R03AG065772)

  • Ye Zhang

National Institute of Child Health and Human Development (P50HD103557)

  • Ye Zhang

National Center for Advancing Translational Science UCLA CTSI Grant (UL1TR001881)

  • Ye Zhang

W. M. Keck Foundation (W. M. Keck Foundation junior faculty award)

  • Ye Zhang

UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (Innovation Award)

  • Ye Zhang

Wendy Ablon Foundation (Ablon Scholar Award)

  • Ye Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures (protocols: #R-16-079 and #R-16-080) were approved by the Chancellor's Animal Research Committee at the University of California, Los Angeles, and conducted in compliance with national and state laws and policies.

Reviewing Editor

  1. Kelly Monk, Vollum Institute, Oregon Health & Science University, United States

Version history

  1. Received: January 29, 2022
  2. Preprint posted: February 14, 2022 (view preprint)
  3. Accepted: February 12, 2023
  4. Accepted Manuscript published: February 13, 2023 (version 1)
  5. Version of Record published: February 22, 2023 (version 2)

Copyright

© 2023, Pan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,269
    Page views
  • 204
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lin Pan
  2. Amelia Trimarco
  3. Alice J Zhang
  4. Ko Fujimori
  5. Yoshihiro Urade
  6. Lu O Sun
  7. Carla Taveggia
  8. Ye Zhang
(2023)
Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination
eLife 12:e77441.
https://doi.org/10.7554/eLife.77441

Further reading

    1. Cell Biology
    2. Developmental Biology
    Simon Schneider, Andjela Kovacevic ... Hubert Schorle
    Research Article

    Cylicins are testis-specific proteins, which are exclusively expressed during spermiogenesis. In mice and humans, two Cylicins, the gonosomal X-linked Cylicin 1 (Cylc1/CYLC1) and the autosomal Cylicin 2 (Cylc2/CYLC2) genes, have been identified. Cylicins are cytoskeletal proteins with an overall positive charge due to lysine-rich repeats. While Cylicins have been localized in the acrosomal region of round spermatids, they resemble a major component of the calyx within the perinuclear theca at the posterior part of mature sperm nuclei. However, the role of Cylicins during spermiogenesis has not yet been investigated. Here, we applied CRISPR/Cas9-mediated gene editing in zygotes to establish Cylc1- and Cylc2-deficient mouse lines as a model to study the function of these proteins. Cylc1 deficiency resulted in male subfertility, whereas Cylc2-/-, Cylc1-/yCylc2+/-, and Cylc1-/yCylc2-/- males were infertile. Phenotypical characterization revealed that loss of Cylicins prevents proper calyx assembly during spermiogenesis. This results in decreased epididymal sperm counts, impaired shedding of excess cytoplasm, and severe structural malformations, ultimately resulting in impaired sperm motility. Furthermore, exome sequencing identified an infertile man with a hemizygous variant in CYLC1 and a heterozygous variant in CYLC2, displaying morphological abnormalities of the sperm including the absence of the acrosome. Thus, our study highlights the relevance and importance of Cylicins for spermiogenic remodeling and male fertility in human and mouse, and provides the basis for further studies on unraveling the complex molecular interactions between perinuclear theca proteins required during spermiogenesis.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Irina AD Mancini, Riccardo Levato ... Jos Malda
    Research Article

    During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.