Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination

  1. Lin Pan
  2. Amelia Trimarco
  3. Alice J Zhang
  4. Ko Fujimori
  5. Yoshihiro Urade
  6. Lu O Sun
  7. Carla Taveggia  Is a corresponding author
  8. Ye Zhang  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. IRCCS Ospedale San Raffaele, Italy
  3. Osaka Medical and Pharmaceutical University, Japan
  4. Daiichi University of Pharmacy, Japan
  5. The University of Texas Southwestern Medical Center, United States

Abstract

In the developing central nervous system, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes, which form myelin around axons. Oligodendrocytes and myelin are essential for the function of the central nervous system, as evidenced by the severe neurological symptoms that arise in demyelinating diseases such as multiple sclerosis and leukodystrophy. Although many cell-intrinsic mechanisms that regulate oligodendrocyte development and myelination have been reported, it remains unclear whether interactions among oligodendrocyte-lineage cells (OPCs and oligodendrocytes) affect oligodendrocyte development and myelination. Here, we show that blocking vesicle-associated membrane protein (VAMP) 1/2/3-dependent exocytosis from oligodendrocyte-lineage cells impairs oligodendrocyte development, myelination, and motor behavior in mice. Adding oligodendrocyte-lineage cell-secreted molecules to secretion-deficient OPC cultures partially restores the morphological maturation of oligodendrocytes. Moreover, we identified L-type prostaglandin D synthase as an oligodendrocyte-lineage cell-secreted protein that promotes oligodendrocyte development and myelination in vivo. These findings reveal a novel autocrine/paracrine loop model for the regulation of oligodendrocyte and myelin development.

Data availability

We deposited all RNA-seq data to the Gene Expression Omnibus under accession number GSE168569

The following data sets were generated

Article and author information

Author details

  1. Lin Pan

    Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Amelia Trimarco

    Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
    Competing interests
    No competing interests declared.
  3. Alice J Zhang

    Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Ko Fujimori

    Department of Pathobiochemistry, Osaka Medical and Pharmaceutical University, Osaka, Japan
    Competing interests
    No competing interests declared.
  5. Yoshihiro Urade

    Daiichi University of Pharmacy, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  6. Lu O Sun

    Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Carla Taveggia

    Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
    For correspondence
    taveggia.carla@hsr.it
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6531-9544
  8. Ye Zhang

    Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    yezhang@ucla.edu
    Competing interests
    Ye Zhang, consulted for Ono Pharmaceutical..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1546-5930

Funding

UCLA Brain Research Institute (Knaub Postdoctoral Fellowship)

  • Lin Pan

Friends of the Semel Institute for Neuroscience & Human Behavior (Friends scholar award)

  • Ye Zhang

National Institute of Neurological Disorders and Stroke (R00NS089780)

  • Ye Zhang

National Institute of Neurological Disorders and Stroke (R01NS109025)

  • Ye Zhang

National Institute of Aging (R03AG065772)

  • Ye Zhang

National Institute of Child Health and Human Development (P50HD103557)

  • Ye Zhang

National Center for Advancing Translational Science UCLA CTSI Grant (UL1TR001881)

  • Ye Zhang

W. M. Keck Foundation (W. M. Keck Foundation junior faculty award)

  • Ye Zhang

UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (Innovation Award)

  • Ye Zhang

Wendy Ablon Foundation (Ablon Scholar Award)

  • Ye Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures (protocols: #R-16-079 and #R-16-080) were approved by the Chancellor's Animal Research Committee at the University of California, Los Angeles, and conducted in compliance with national and state laws and policies.

Copyright

© 2023, Pan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,092
    views
  • 298
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lin Pan
  2. Amelia Trimarco
  3. Alice J Zhang
  4. Ko Fujimori
  5. Yoshihiro Urade
  6. Lu O Sun
  7. Carla Taveggia
  8. Ye Zhang
(2023)
Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination
eLife 12:e77441.
https://doi.org/10.7554/eLife.77441

Share this article

https://doi.org/10.7554/eLife.77441

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Fridtjof Brauns, Nikolas H Claussen ... Boris I Shraiman
    Research Article

    Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalío Reyes, Arthur D Lander, Marcos Nahmad
    Research Article Updated

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here, we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between robustness and precision to establish tunable patterning properties in a target-specific manner.