Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite

  1. Pengge Qian
  2. Xu Wang
  3. Chuan-Qi Zhong
  4. Jiaxu Wang
  5. Mengya Cai
  6. Wang Nguitragool
  7. Jian Li  Is a corresponding author
  8. Huiting Cui  Is a corresponding author
  9. Jing Yuan  Is a corresponding author
  1. Xiamen University, China
  2. Xiamen Center for Disease Control and Prevention, China
  3. Mahidol University, Thailand

Abstract

Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The Inner Membrane Complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labelling to compile the proteome of the schizont IMC of rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing IMC localization of proteins during the schizont development.

Data availability

The Mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data identifier PXD028193. All other relevant data in this study are submitted as supplementary source files.

The following data sets were generated

Article and author information

Author details

  1. Pengge Qian

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xu Wang

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chuan-Qi Zhong

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiaxu Wang

    Xiamen Center for Disease Control and Prevention, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mengya Cai

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wang Nguitragool

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  7. Jian Li

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    jianli_204@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  8. Huiting Cui

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    huitingcui@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Jing Yuan

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    yuanjing@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8907-9143

Funding

National Natural Science Foundation of China (32170427,31970387,31872214)

  • Jing Yuan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were performed by approved protocols (XMULAC20140004) by the Committee for Care and Use of Laboratory Animals of Xiamen University. The ICR mice (female, 5 to 6 weeks old) were purchased from the Animal Care Center of Xiamen University

Copyright

© 2022, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,718
    views
  • 460
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengge Qian
  2. Xu Wang
  3. Chuan-Qi Zhong
  4. Jiaxu Wang
  5. Mengya Cai
  6. Wang Nguitragool
  7. Jian Li
  8. Huiting Cui
  9. Jing Yuan
(2022)
Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite
eLife 11:e77447.
https://doi.org/10.7554/eLife.77447

Share this article

https://doi.org/10.7554/eLife.77447

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.