Disruption in structural–functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness

  1. Rajanikant Panda
  2. Aurore Thibaut
  3. Ane Lopez-Gonzalez
  4. Anira Escrichs
  5. Mohamed Ali Bahri
  6. Arjan Hillebrand
  7. Gustavo Deco
  8. Steven Laureys
  9. Olivia Gosseries
  10. Jitka Annen  Is a corresponding author
  11. Prejaas Tewarie  Is a corresponding author
  1. Coma Science Group, GIGA-Consciousness, University of Liège, Belgium
  2. Centre du Cerveau, University Hospital of Liège, Belgium
  3. Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Spain
  4. GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Belgium
  5. Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Netherlands
  6. Institució Catalana de la Recerca i Estudis Avançats (ICREA), Spain
  7. Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  8. School of Psychological Sciences, Monash University, Australia
  9. CERVO Research Center, Laval University, Canada
  10. Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, United Kingdom
3 figures and 2 additional files

Figures

Overview of the analysis pipeline.

We used the same Shen parcellation for diffusion-weighted MRI (DWI) and functional magnetic resonance imaging (fMRI) data. Time-resolved functional connectivity was estimated using a metric for …

Figure 2 with 1 supplement
Metastability and time-resolved functional networks in disorders of consciousness (DoC).

(A) Metastability for all groups: healthy controls (HC), minimally conscious state (MCS), and unresponsive wakefulness state (UWS) patients. (B–H) Distributions of nonstationarity (excursions from …

Figure 2—figure supplement 1
Dwell time of time-resolved functional networks in disorders of consciousness (DoC).

(A–G) Dwell time for all the networks for the three groups (healthy control [HC], minimally conscious state [MCS], and unresponsive wakefulness syndrome [UWS]). Dwell times for all states add up to …

Relationship between time-resolved connectivity and eigenmodes.

(A) The prediction of static functional connectivity based on structural connectivity for all three groups (healthy control [HC], minimally conscious state [MCS], and unresponsive wakefulness …

Additional files

Supplementary file 1

(A) Details about the patient population. (B) Brain regions involved in the extracted networks by non-negative tensor factorisation.

https://cdn.elifesciences.org/articles/77462/elife-77462-supp1-v2.docx
MDAR checklist
https://cdn.elifesciences.org/articles/77462/elife-77462-mdarchecklist1-v2.docx

Download links